

Scripting and REST interface Guide

Version 5.9, 5.8

THE WORD “EXPERIAN” AND THE GRAPHICAL DEVICE ARE TRADEMARKS OF EXPERIAN AND REGISTERED IN

THE EU, USA AND OTHER COUNTRIES.

THIS DOCUMENT CONTAINS INFORMATION, PROPRIETARY TO EXPERIAN DATA QUALITY, WHICH IS

PROTECTED BY INTERNATIONAL COPYRIGHT LAW. THE INFORMATION CONTAINED HEREIN MAY NOT BE

DISCLOSED TO THIRD PARTIES, COPIED OR DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR

WRITTEN CONSENT OF COPYRIGHT OWNER. PLEASE CONTACT EXPERIAN TO FOR ANY CONSENT ENQUIRIES.

(C) 2007 – 2018 EXPERIAN DATA QUALITY

Scripting and REST interface Guide ©2018 Experian Page 2 of 141

Preface

This document is the starting point for anyone wishing to automate functionality or integrate both into and

out of Experian Pandora. For further help concerning this document or the use of Experian Pandora, please

contact your support representative. This document is very technical in nature and assumes programming

knowledge by the reader.

Defining and Executing a script from the UI

Experian Pandora supports powerful customisation and bespoke integration functionality via the scripting

engines it provides. It allows users to write their own code in an environment that has access to all the

functionality and data within the Server (security notwithstanding) in order to do any task imaginable.

The Experian Pandora Server supports scripting using the following Script Engines:

 JavaScript – Oracle’s Nashorn engine (V1.8.0_91)

 Groovy – Groovy V2.4.3

 Scala – www.scala-lang.org V2.11.7

 Ruby- jRuby engine V1.7.22

 R – org.renjin V0.7.1577

 Python – jython engine

The Experian Pandora UI provides dialogs to create, debug and run scripts against particular objects or over
the entire repository.

Creating a script in the UI

To add a script you first need to add a Script Library. Script libraries provide you with the means of grouping

functionally identical scripts together. For example you may wish to create a Library for Export scripts and

another Library for Alert scripts.

In the Navigator panel select: Home > Libraries > Script Libraries and right-click to select New

http://www.scala-lang.org/

Scripting and REST interface Guide ©2018 Experian Page 3 of 141

Next, open the Script Libraries item, right-click on your new library and select ‘New Script…”, and the

following dialog will be displayed:

Scripting and REST interface Guide ©2018 Experian Page 4 of 141

This dialog allows you to select a name and description for your script, the language you wish to use, the

type of the script, the context in which it should appear and whether it should produce a log file (a

redirection of the script’s stdout and stderr).

If you tick “Log to File” all script output will be written to a file in the servers’ data/scriptoutput directory.

The file may be viewed by navigating to the Script Library that contains the script and right-click on the script

name, selecting View Logs. In the example dialog this is Home > Libraries > Script Libraries > Alerts > Python

Template Alert

Scripting and REST interface Guide ©2018 Experian Page 5 of 141

Right Click on the log file you wish to view and Select View Output. Note that viewing script logs is subject to

permissions checks.

Scripting and REST interface Guide ©2018 Experian Page 6 of 141

The contents of the log file will be displayed as a drilldown, and can be exported using the standard tools if
necessary.

Scripting and REST interface Guide ©2018 Experian Page 7 of 141

The log file is split into four distinct sections.

Reserved Script Parameters are those parameters that Pandora provides as Global variables to your script.

These will depend on the context of your script.

User Defined Script Parameters are key-value pairs that the user may have defined in either the parameters

tab (in the script edit dialog) when you create or edit a script, or Runtime parameters (added when a script is

run interactively in the client)

Global Script Parameters are Global variables that are always available to the script (although their values

may be null). The PSession object provides access to the internal API. PObjects is an ArrayList that will

contain context dependent Objects. Parameters is a Map containing key-value pairs defined by the User or

Script.

Script Output will be any output generated by the script using the script languages’ print statements. Note

that both R and Groovy script engines currently don’t support redirection of script output, so any printable

output in these language will appear in the server log.

Scripting and REST interface Guide ©2018 Experian Page 8 of 141

Script Languages

The following Script languages are supported:

 JavaScript

 Groovy

 Scala

 Ruby

 R

 Python

Scripting and REST interface Guide ©2018 Experian Page 9 of 141

Script Properties

The script properties tab allows you to define named properties for the script.

If no properties have been set, the script will run against any object belonging to the selected context group.

However, if a property has been defined, the contextual Repository Object (or a parent of it) must have the

same property defined or the script will not be available.

This functionality is to restrict certain scripts so they can only execute against objects that are marked

similarly. For example, if your script can only cope with postcode columns, you can get a property of the

script ‘isPostCode’. When you load data, you can set this property on postcode columns and the script will

run on these columns and these only.

Scripting and REST interface Guide ©2018 Experian Page 10 of 141

Script Parameters

The dialog also allows you to define parameters for your script, along with their default values. In some

cases, when you execute a script from the UI it will prompt for the parameters you have defined in this

dialog allowing users to override them at runtime.

The parameters defined by this dialog will be available to the script in the parameters Global Variable. This is

essentially a Map object (TypedPropertySet) of key-value pairs. Values may be obtained using any of the

following method calls (e.g. if (parameters.contains(“key”)) {…})

Return Type Method
Boolean contains(key)

TypedProperty get(key)

Boolean getBoolean(key)

Double getDecimal(key)

Long getNumber(key)

String getString(key)

JSONObject getJSONObject(key)

Boolean isEmpty()

Integer size()

String getPropertiesString(key)

Iterator<TypedProperty> Iterator()

Scripting and REST interface Guide ©2018 Experian Page 11 of 141

Script Types

The script type defines how the script will behave and where it can be used.

Script Type Description
Server General purpose script that runs on the server. The script runs asynchronously on the server and

does not produce any UI visible output.

Alert Executed when an alert has been triggered. Only visible in Alerts dialogs.

Export Create a server job to export data. All output will be directed to the output file (if selected).

RESTful Execute RESTful calls in a web UI window. When executed, a dialog will appear which allows you
to choose the output type (html, XML, JSON), whether to pivot the data, and to enter any
parameters specified before running the script in a web window within the UI.

Client UI Script that runs in a Java UI window. When executed a Java UI container will appear and the
script will be executed within it. The window will allow you to see errors in the script, console
output from the script, and allow you to modify and rerun the script. The window also allows the
script to add custom UI components to its toolbar.

Batch Script UI available script that runs as a job. If any parameters have been defined, they will be prompted
for before the script runs.

Client Module Client-side script available to call from other scripts, but not directly.

Server Module Server-side script available to call from other scripts, but not directly.

Save As Script that may be run on a Table allowing access to each row/column/cell in the table. The
output will be another Table. Rows/columns may be added/deleted/reordered and cell data
modified

Script types are explained in more detail later in this document.

Scripting and REST interface Guide ©2018 Experian Page 12 of 141

Script Context

This allows you to define the context for the Script. This is the type of Repository Objects that this script is

applicable to in Experian Pandora. If an Object (e.g. a Table) has any scripts that have been denoted as being

associated with that Object and the user has the Execute permission for the scripts, then a Scripts menu item

will be visible that will allow you to select the relevant script and run it immediately.

The available contexts are listed in the following table:

Script Context Description
None Do not display in UI.

All Display on all listed UI objects.

Global Display on global Action button on the toolbar. There will be no context for scripts executed
from this button.

Selection The script will be accessible from the right-click menu on a drilldown list view. The script will
be provided a JSON object (pobjects array) that contains the data that has been selected on
the view.

Column Limit the script to Column objects.

Dependency Limit the script to Dependency objects.

Domain Limit the script to Domain objects.

Relationship Limit the script to Relationship objects.

Key Limit the script to Key objects.

Note Limit the script to Note objects.

Note Entry Limit the script to Note Entry objects.

Saved Drilldown Limit the script to Saved Drilldown objects.

Table Limit the script to Table objects.

View Limit the script to View objects.

None The context is not relevant

All Applicable to all Repository objects

All Script Types (other than Alert scripts) have access to the Pandora API. Scripts may only be executed if the

User has the relevant permission (Execute). A more detailed discussion of each script type is given below.

Examples are available in the distribution’s examples directory for all supported languages and types. These

are provided purely for illustration purposes. Bear in mind that the OS facilities available to the script will

depend on the architecture the Experian Pandora server is running on.

Scripting and REST interface Guide ©2018 Experian Page 13 of 141

Code Editor

Once you have defined your script, click the “Save” or “Edit Code…” buttons to display the script editor. The

dialog is also available directly from the script context menu in the Explorer view, and the Java UI container

window.

If you have already defined a script it will be displayed here and can be edited in-place. If the Template

button is enabled you may use it to populate the editor with a Template example appropriate to the script

action/context/language.

Enter your code into this window and click the Save button to close the dialog and save your script.

Scripting and REST interface Guide ©2018 Experian Page 14 of 141

When the Save button is pressed, your script will be checked for errors. If errors are found, a popup window

will be displayed containing the details, and you will be given the opportunity to return to your code to fix

the error, save your code anyway, or quit without saving.

Executing a script from the UI

Scripts can be executed by right-clicking on a valid object and selecting the relevant script under the Actions

menu item.

The exact results will vary depending upon the script type, and the script itself.

Scripting and REST interface Guide ©2018 Experian Page 15 of 141

Executing a script from the command line

Experian Pandora provides a batch client for executing scripts to automate functionality externally from the

client application. Much of what is possible with the client is possible with the script interface. The script

execution program is network aware so scripts can run anywhere and do not have to execute on the server

host. The script interface is accessible using the PExecute command in the client software distribution.

Arguments are case-insensitive. The following command line arguments are available:-

Argument Description
Hostname This is an optional parameter denoting the server hostname to connect to. This defaults to localhost.

Username The Experian Pandora username to login as. This is mandatory.

Password The password to use which can either be in the clear or encrypted. The default is encrypted and this
parameter is mandatory.

Port The port number to connect to on the server. This is mandatory. Port numbers are in the range 1 to
65535.

Encrypted This is a flag to denote whether the password supplied is encrypted or not. Default is true.

Script This is the filename of the script to execute.

Language This is the language the script file is written in. If this flag is not provided, Experian Pandora will
determine the language from the file extension.

Headings When executing an SQL script, this flag denotes whether headings should be outputted. The default
is true. This parameter is optional.

Style This is the output style to use when executing an SQL script. Options are CSV, JSON and XML for the
appropriate output formats.

The PExecute program returns one of a number of result codes depending on the result of the script. To

view these result codes, you can call PExecute -help result_codes

If you run PExecute with any arguments that are not listed above, these arguments and their values will be

passed through into the script and can be accessed using the getArgument(String name, Object

defaultValue) method.

Scripting and REST interface Guide ©2018 Experian Page 16 of 141

Script Types

Experian Pandora supports a number of different types of script.

Alert Scripts

Alert Scripts are associated solely with the Alerts mechanism. Only scripts with an Alert Script Type may be

used for Alerts. Users may forward Alerts to recipients that may be either a User or a Script. The Script will

be supplied with the Inputs:

Alert script Global Variables

Key Value
psession A PSession object providing access to the API (or null)

pobjects An ArrayList of contextual Objects

parameters A TypedPropertySet (Map) of properties (key-value pairs)

alert A JSONObject - The JSON representation of the Alert

alertObject A JSONObject - The JSON representation of the Subject (if any) of the Alert (e.g. a Table)

alertId The alert’s id (Long)

scriptId The Script’s Id (Long)

scriptName The name of the Script

restUrl The URL of the server’s RESTful interface

responseRequired True if an acknowledgement is expected

acknowledgeUrl The URL that may be used to acknowledge this alert

An Alert Script must provide the following functions:

 Void call()

 Boolean shouldWait()

 String getResultText()

If the Script doesn’t provide all 3 of these functions an error will be reported and the script will not be

executed. The Script should not include any executable code outside of these functions. When the Script is

executed the server will call the “call()” function. If an acknowledgement is required the server will call the

“shouldWait()” function. If this function returns True then the server will wait for an acknowledgement,

otherwise it will continue processing other recipients. The wait is subject to the acknowledgement Timeout

associated with either the containing Alert Group or the Script recipient. If the Script experiences an error

whilst processing the Alert then the server will call the function “getResultText()” to obtain the reason for

the error.

Alert Scripts are executed in the context of the Pandora Server so due attention should be paid to security

considerations and OS support provided by the scripting language.

Because alert scripts are not actioned explicitly by a user, their output is written to the Administrator’s log

file.

Scripting and REST interface Guide ©2018 Experian Page 17 of 141

Export Scripts

Export Scripts provide the means for custom exports. They may be selected in the “Save As > Target >

Script” or “Save As > File > Script” dialog for a Table or Drilldown. Select a script Library and then a Script

from the menu items. Only Scripts that have an Export Script Type will appear in these menus/ dialog.

“Save As -> File” will return the file (if any) to the Client’s machine. “Save As > Target” saves the output file

(if any) to the server’s data/export directory.

Export script Global Variables

Key Value
psession An API Object that provides public function calls to the Pandora server (see below for a complete

list of API function calls)

pobjects An ArrayList of contextual Objects - pobjects[0] is a PScriptQuery object object that
provides the following function calls

o long getRowCount()
o int getColumnCount()
o PDataCell getCell(long row, int column)
o String getColumnName(int columnIndex)
o void setProgress(int percentProgress)

parameters A TypedPropertySet (Map) of properties (key-value pairs)

pout A FileOutputStream Object or null
 If the user provided a File Name in the “Save As” dialog then this OutputStream may be used for
writing column values to an output file.

Export scripts execute in the context of the client Username and are subject to Permissions and Capability

checks.

Scripting and REST interface Guide ©2018 Experian Page 18 of 141

Server Scripts

These scripts are general purpose server-side scripts that can run in the context of a Repository Object or run

globally with no context.

They run asynchronously on the Server and any output generated by the script will be displayed

asynchronously in a console window:

If the window is closed, the script will carry on running until it finishes.

Scripting and REST interface Guide ©2018 Experian Page 19 of 141

Batch Scripts

Batch scripts are run as Jobs by the Scheduler. They are subject to permissions and capability checks on the

user that submits the job.

The following global variables are defined for a Web script:

 psession – An API Object that provides public function calls to the Pandora server (see below for a
complete list of API function calls)

 pobjects[] – The pobjects array contains the context objects that were selected (if any) when the
script was executed. Each object is one of the following types (depending on the menu item
context):

o Table
o Column
o Join
o Dependency
o Domain
o Key
o Note
o Note Detail
o Saved Query
o View Table

 scriptProperties – A Map Object that provides the following property key-value pairs
o Script parameters – parameters associated with the script

Scripting and REST interface Guide ©2018 Experian Page 20 of 141

RESTful Scripts

Users may execute scripts via the RESTful interface. The general format of the URL is:

http://servername:restfulport/object/object_type/object_name/resource_typ

e/resource_name.output_format?username=admin&password=admin

For running the script named TEST on a Table named CUSTOMER:

http://localhost:7900/object/TABLE/CUSTOMER/SCRIPT/TEST.xml?username=admi

n&password=admin

The URL is broken down as:-

 localhost The DNS name or IP address of the Pandora server

 7900 The RESTful port

 see Home > Settings > Server Settings > Communication > REST Web Server TCP/IP

Port

 /object Request an Object from the Repository

 /TABLE The target repository object type (a PObject)

 /CUSTOMER The target repository object name (In this example the Table name)

 /SCRIPT The Resource Type (a Script)

 /TEST.xml The Name of the Script (TEST) and its output format (.xml)

 ?username The user’s login name

 &password The user’s password

Note that the Script Name that you specify must have a Script Context Type of “Web”

The following global variables are defined for a Web script:

 psession – An API Object that provides public function calls to the Pandora server (see below for a
complete list of API function calls)

 pobjects[] – The pobjects array contains the context objects that were selected (if any) when the
script was executed. Each object is one of the following types (depending on the menu item
context):

o Table
o Column
o Join
o Dependency
o Domain
o Key
o Note
o Note Detail
o Saved Query
o View Table

 scriptProperties – A Map Object that provides the following property key-value pairs
o Script parameters – parameters associated with the script

Scripting and REST interface Guide ©2018 Experian Page 21 of 141

Client UI Scripts

Client Scripts allow you to run a script within a Java UI window on the client.

The following global variables are defined for a Client UI script:

 psession – An API Object that provides public function calls to the Pandora server (see below for a
complete list of API function calls)

 pobjects[0] – This object is the container window. It is used to add UI components to the window.

 pobjects[1], pobjects[N] – The remaining objects in the pobjects array contain the context objects
that were selected when the script was executed. Each object is one of the following types
(depending on the menu item context):

o Table
o Column
o Join
o Dependency
o Domain
o Key
o Note
o Note Detail
o Saved Query
o View Table

 scriptProperties – A Map Object that provides the following property key-value pairs
o Script parameters – parameters associated with the script

Scripting and REST interface Guide ©2018 Experian Page 22 of 141

Client Module

The Client Module is used to define scripts that run synchronously on the client and can be invoked by other
scripts.
Client Modules return information by implementing the getResult function. For example to return the
variable ‘text’ to the calling script, implement the following in your Client Module:

var text = "Server Script Invoked";

function getResult() {

 return text;

}

To invoke a Client Module script and obtain its returned value, you first need to standardise the script name,
find the script object within the repository, and once found invoke it and get its return value. For example, to
execute a script called “Client Script” you need to implement the following:

importClass(com.experian.utility.string.StringUtil);

importClass(com.experian.api.PObjectType);

// Call Client Module called "Client Script"

var scriptName = "Client Script";

scriptName = StringUtil.standardize(scriptName);

scriptObj = psession.findObject(PObjectType.SCRIPT, scriptName);

if (scriptObj != null) {

 var retval = psession.invokeClientModule(scriptObj, "args");

 if (retval != null) {

 print("Client Module returned: " + retval);

 }

}

The script object can be obtained by calling the psession.findObject method. The name of the script
needs to be standardised in order to successfully find it.
The Client Module can then be invoked with any argument by passing the args as (ideally a JSON structure)
the second parameter to the psession.invokeScript method.

Scripting and REST interface Guide ©2018 Experian Page 23 of 141

Server Module

The Server Module type can be used to define scripts that run as a job on the server that can be invoked by a
different script. The Server Method script will execute on the server synchronously, so is capable of
returning information to the calling script.
Like Client Modules, Server Modules return data to the invoking script by implementing the getResult
function. See the Client Module section above for an example.

Once you have defined a Server Module script, you can invoke it from another script using the following
(JavaScript) code:

scriptName = "Server Script";

scriptName = StringUtil.standardize(scriptName);

scriptObj = psession.findObject(PObjectType.SCRIPT, scriptName);

if (scriptObj != null) {

 var retval = psession.invokeServerModule(scriptObj, "My Args");

 if (retval != null) {

 print("Server Module returned: " + retval);

 }

}

The script object can be obtained by calling the psession.findObject method. The name of the script
needs to be standardised in order to successfully find it.
The Server Module can then be invoked with any argument by passing the args as (ideally a JSON structure)
the second parameter to the psession.invokeScript method.

An example Server Module script that returns some text with the argument value appended to them:

var text = "Server Script Invoked with params: ";

function getResult() {

 return text + parameters.getString("args");

}

Scripting and REST interface Guide ©2018 Experian Page 24 of 141

Save As

The Save As type can be used to define scripts that may be used to iterate over a Table’s rows/columns. You
may:

 add rows

 delete rows

 reorder rows

 add columns

 delete columns

 reorder columns

 rename columns

 modify cell data

The resultant rows/columns may be output to a new table or a new version of the same table.

Global Variables
Key Value
psession A PSession object providing access to the API (or null)

pobjects An ArrayList(1) - A PObject representing the Table

parameters A TypedPropertySet (Map) of properties (key-value pairs) – see below

Properties (in the parameters Global Variable)
Key Value
jobData A PJob object representing the job that was scheduled to execute the table load

+ Script
properties

Any script parameters inherited from the Script definition and any parameters defined in the
Table Load definition

Since the output is another table, users should provide a method called getMappingDocument(). This should

return a UserDocument that describes what transformations the script made to the data. When a user

requests a Mapping Report for a table that was created by a script, the Mapping code will call this script

function and embed the UserDocument in the Mapping Report in the Script section. The template (example)

code for scripts with the Save As action provide an example of this function.

To execute a scripted save-as function navigate to Home > Data > Tables > MyTable > Rows and then select

Save As > Table

Scripting and REST interface Guide ©2018 Experian Page 25 of 141

Scripting and REST interface Guide ©2018 Experian Page 26 of 141

You may then select the appropriate script that will be used to load the table.

Scripting and REST interface Guide ©2018 Experian Page 27 of 141

Script Languages

Experian Pandora currently supports the JavaScript, Groovy, Ruby, Scala, R and Python languages. Although

this documentation will concentrate on the JavaScript language, the objects and methods described are

transferable to the other languages. Also, example scripts will be provided for all languages as examples of

how to integrate them with Experian Pandora.

JavaScript

JavaScript scripts use Oracle’s Nashorn engine. They can utilise any java class that is delivered with the

product to reference Repository objects and methods, or Java Swing classes to display, configure and use UI

components.

Pandora will prefix your scripts with load("nashorn:mozilla_compat.js");
All the Nashorn JavaScript extensions are available for use.

For example, to use JavaScript to find a repository object (in this case a script called “My Script”) you need to

run the following code:

importClass(com.experian.utility.string.StringUtil);

importClass(com.experian.api.PObjectType);

scriptName = "Server Script";

scriptName = StringUtil.standardize(scriptName);

scriptObj = psession.findObject(PObjectType.SCRIPT, scriptName);

In order to add UI Components to a Client UI Window, you need to import the relevant swing classes. For

example to add a button to a Client UI window, and handle actions when pressed you need to run the

following code:

importClass(javax.swing.JButton);

importClass(java.awt.BorderLayout);

importClass(java.awt.event.ActionListener);

pobject = pobjects[0];

myBtn = new JButton("My Button");

var buttonPressed = new ActionListener({

 actionPerformed: function(e) {

 print("Button Pressed");

 }

});

myBtn.addActionListener(buttonPressed);

pobject.getQueryContainer().add(myBtn, BorderLayout.SOUTH);

pobject.getQueryContainer().revalidate();

pobject.getQueryContainer().repaint();

If you need to load external script libraries then use the “load” statement.

Scripting and REST interface Guide ©2018 Experian Page 28 of 141

Script libraries are loaded by default from the (server’s) current working directory if the name is not
qualified. E.g.

load("XMLWriter-1.0.0.js"); // load from the working directory
load(“file:///c:/pandora/ XMLWriter-1.0.0.js”); // load from an explicit directory
load(“http://localserver:7900/web/js/ XMLWriter-1.0.0.js”) ; // get the library from root/web/

Python

The server supports Python 3, so pre-v3 ‘print’ statements are not supported. If you need to print to console

(for example) the new print() function should be used instead.

All scripts will be prefixed with "from __future__ import print_function";

The following Python example script obtains the current user, queries the selected context object

(pobject[0]) and tries to obtain any user-defined parameters associated with the script:

global pobjects

global psession

global parameters

print ('Python script executed by ', psession.getUsername())

Get the PScriptQuery object and list it’s properties

pobject = pobjects.get(0)

ostring = pobject.toString()

print ('object = ', ostring)

Get the table name parameter

tableName = parameters.getString('TableName')

print ('TableName = ', tableName)

The output of this script can be seen in the script log file which can be obtained by running it, then right-

clicking on the script icon and selecting the “View Output” menu option.

Groovy

Scripts can also be written in Groovy. Groovy scripts have access to the same global objects as the other

scripting languages. Note that logging to file or console doesn’t work due to a bug in Groovy.

As an example of a Groovy script, this obtains the current user, queries the selected context object

(pobject[0]) and tries to obtain any user-defined parameters associated with the script:

String username = psession.getUsername()

println "Groovy script executed by $username"

// Get the table name parameter

String tableName = parameters.getString("TableName")

file:///c:/pandora/%20XMLWriter-1.0.0.js

Scripting and REST interface Guide ©2018 Experian Page 29 of 141

println "Table Name: $tableName"

// Get context object properties

String props = pobjects.get(0).toString()

println "Object Properties: $props"

The output of this script can be seen in the script log file which can be obtained by running it, then right-

clicking on the script icon and selecting the “View Output” menu option.

Ruby

Ruby scripts can also be used, and they contain the same global objects as the other scripting languages.

Pandora will prefix your scripts with "include Java";

For example, this script obtains the current user, queries the selected context object (pobject[0]) and tries to

obtain any user-defined parameters associated with the script:

puts ('Ruby script executed by '+ $psession.getUsername())

Get the table name parameter

puts ('Table Name: ' + $parameters.getString('TableName'))

Get context object properties

puts ('Object Properties: ' + $pobjects.get(0).toString())

The output of this script can be seen in the script log file which can be obtained by running it, then right-

clicking on the script icon and selecting the “View Output” menu option.

R

R scripts can also be used, and they contain the same global objects as the other scripting languages. The R

script engine (Renjin) does not support redirection of the stdout/stderr. All Script output will be written to

the server log file. If you wish to include other R plugins, the jar files should be placed in the server’s data

directory root/external/jar (root is the representation of the server property Home > Settings > Server

Settings > Storage > Data)

You may obtain these plugins from http://packages.renjin.org/

Scala

Scala scripts can also be used, and they contain the same global objects as the other scripting languages.

Currently there are no example scripts (Templates) for Scala

http://packages.renjin.org/

Scripting and REST interface Guide ©2018 Experian Page 30 of 141

RESTful

It is also possible to execute a script using the REST API. In order to do this, the script must be placed in the

/scripts folder on the server. It can be accessed by calling /script/scriptName. The script will be passed the

following arguments:

Argument Description
pobjects[] An array of PObjects on which the script was run. If the script was executed against one item it can

be obtained using pobjects[0].

resourceType The type of resource that was requested. This will be one of pdf, html, txt, text, json, or xml.

Using this method, scripts can easily be used to display custom documents over the REST API. The script

must call the setReturnValue(Object returnValue) method which can take one of the following:

 An array of bytes (byte[]) which is data already formatted for return by the REST server

 A JSONObject which is a JSON object of key/value pairs (can be hierarchical) which will be

automatically formatted according to the resourceType.

 A PDocument which will be formatted into the appropriate return type (if possible), e.g. pdf

Adding Scripts as New REST Resources

Scripts can be used as new resources that can be accessed using the REST API.

To do this, create a script library in Experian Pandora, then add a new script to it. In the Create Script dialog

the script type should be set to be RESTful, and the Script Context should be set to limit the objects that the

script can be executed on in the UI. Note that the Script Context only applies to the UI, and does not limit the

use of the script from the restful engine.

In the Create Code edit window, enter the script that is required. To define the data that is returned you

must implement a setReturnValue function and return the value in there. For example, this script returns the

object it was invoked against and the resource type requested.

Scripting and REST interface Guide ©2018 Experian Page 31 of 141

setReturnValue(

 "The object you called this with was " +

 getArgument("object",null).getProperty(PProperty.DISPLAY_NAME) +

 " and the type of request was " +

 getArgument("resourceType", ResourceType.XML)

);

The url that will call this script is defined as:

http://localhost:7900/object/TABLE/CUSTOMER/SCRIPT/TEST.xml?username=my_username&password=my

_password

The black parts define installation specific items that should be replaced with your servername, http port,

username and password. The bold parts highlight the table being accessed in the script.

The script will receive two arguments:

1. pobject[0] which is the repository object specified in the URL

2. resourceType which is the output type requested – XML in this case.

http://localhost:7900/object/TABLE/CUSTOMER/SCRIPT/TEST.xml?username=my_username&password=my_password
http://localhost:7900/object/TABLE/CUSTOMER/SCRIPT/TEST.xml?username=my_username&password=my_password

Scripting and REST interface Guide ©2018 Experian Page 32 of 141

RESTful Object Types

Object types defined by /object are the same as those defined by the PObjectType enumerations:

 TABLE

 BUSINESS_TERM

 DATASOURCE

 DOMAIN_LIBRARY

 BUSINESS_CONSTANT_LIBRARY

 FUNCTION_LIBRARY

 SCRIPT_LIBRARY

 NOTE_CATEGORY

 NOTE_IMPACT

 USER_GROUP

 USER_ROLE

 PROJECT

 SCHEMA

 BUSINESS_CATEGORY

 DOMAIN

 BUSINESS_CONSTANT

 USER

 NOTE

 NOTE_DETAIL

 VIEW

 QUERY

 DEPENDENCY

 KEY

 TABLE_VERSION_GROUP

 COLUMN

 RELATIONSHIP

 FUNCTION

 SCRIPT

Scripting and REST interface Guide ©2018 Experian Page 33 of 141

RESTful Return Types

After the script has finished processing, it should return the resultset back to the REST engine. The result can

be one of the following JAVA object types:

1. String

As per the example above, is a simple string. What happens here is that the REST engine simple

formats the text into UTF-8 bytes and returns it. In the example, a resource type of XML is

requested, but it returns a type that is self-formatted. It could have built up an XML document and

returned that as a string which would be received correctly by the client.

2. byte[]

All webservers return content from requests as arrays of bytes (byte[]) usually in UTF-8 encoding.

Here, the script could do the job of the web server and return a byte array, in which case it is simply

passed back. This is useful if your script was, for example, accessing fixed resources (like pdf files)

and simply streaming back their byte content.

3. JSONObject

The framework of the REST server is based on JSON objects (JavaScript Object Notation). These are

simple objects made up of keys and values, but the values can themselves be objects (or lists of

objects). If you return your result as a JSON Object, then the REST server will attempt to format

sensible output automatically. Ask for JSON, you get what you created. Ask for XML, you will get the

XML representation of that. Ask for PDF, HTML or TXT and you will get a tabular, flattened hierarchy

of the JSON object you created – this is how most requests are handled by Experian Pandora.

4. DocumentElement

The DocumentElement framework is what is used to create Mapping documents, Quality

documents, etc. and is built up of elements such as Sections, Tables, etc. You can create these

directly and return a DocumentElement which will use the proper Document renderers for PDF,

HTML and TXT.

5. PDocument

This is an API wrapper to quickly make documents for the DocumentElement framework. You can

quickly convert data output in queries to document components that can be added to a PDocument

to make a custom document easily. The output is a DocumentElement as per (4) above.

6. Webbable

This is an interface used in Experian Pandora for objects that support ability to output themselves as

JSON objects. If it is Webbable, it has a toJSON() method. This is useful if you have some 3rd party

classes that are created using high-level API calls, don’t want to concern yourself with JSON creation

in the script.

Scripting and REST interface Guide ©2018 Experian Page 34 of 141

Common Scenarios

Context Objects

If the script is executed from the context of one or more objects in the UI it will be passed these objects in

the pobjects array.

The script can query the pobjects array to find how many objects are being passed, and for each of them get

their properties. The following script prints the properties for each context object passed:

for (var i=0; i<pobjects.size(); i++) {

 pobject = pobjects[i];

 print(pobject);

}

Note that if the script is running in a Client UI window, the first pobject will be the window context that is

used when adding UI components, the following pobjects are the context objects.

Getting a Context Object’s data

Having been passed a context object (or obtained one from the repository through the API) you’ll probably

need to get its data. This simple example show how to get a context Table’s columns and data.

// imports

importClass(com.experian.api.PObjectType);

importClass(com.experian.api.PObject);

importClass(com.experian.api.PQueryType);

importClass(com.experian.api.PProperty);

importClass(com.experian.api.PDataRow);

importClass(com.experian.api.PDataCell);

importClass(com.experian.api.ColumnDefinition);

// get context object (will start from 1 if Client UI)

var pobject = pobjects.get(0);

// get object type

var otype = pobject.getProperty(PProperty.OBJECT_TYPE);

// if type is Table

if (otype.toString() === "Table") {

 // create drilldown to rows

 var drilldown = psession.createDrilldown(pobject, PQueryType.ROW)

 // execute it

 drilldown.run();

 // get Column data

 var columns = drilldown.getColumns();

 columns.forEach(function(column) {

 // print a list of column names

 print ("COLUMN: " + column.getDisplayName());

 });

Scripting and REST interface Guide ©2018 Experian Page 35 of 141

 // get row count

 var rowcount = drilldown.getRowCount();

 // get row data for for 0

 var orow = drilldown.getRow(0);

 // can either get entire row as CSV

 var csvRow = orow.toCsv();

 // print each cell

 while (orow.hasNext()) {

 var cell = orow.next();

 print("CELL: " + cell);

 }

}

User-defined Parameters

The following javascript sample allows the script to obtain any parameters that have been defined in the

script properties dialog, and possibly overridden during the script invocation:

var requiredParameter = “TableName”;

value = parameters.getString(requiredParameter);

print(requiredParameter + " value: " + tableName);

Selection Data

If the script context is ‘Selection’ it is only available to run over user-selected cells of a drilldown view.

In this case the script will need to obtain the selected data in order to process it. The following script gets the

data and prints it out:

if (parameters.contains("_selection")) {

 print("Selected Data: " + parameters.getString("_selection"));

}

Loading a Table

The flow of this operation is as follows:

1. Get the correct datasource (PDataSource object)

2. Get the table definition for the thing you want to load (PDataSourceTable object)

3. Configure the PDataSourceTable object as necessary (e.g. change metadata of columns,

names etc.)

4. OPTIONAL: Save your modified PDataSourceTable object back to the server-based XML

configuration

5. Create a PLoadTableDefinition object and set the PDataSourceTable object on that

6. Schedule the load using the PDataSource and PLoadDefinition

Scripting and REST interface Guide ©2018 Experian Page 36 of 141

Getting the Datasource

There are a few methods for this:

PDataSource getInternalDataSource(PDataSourceType type, PImportArea

area)

This allows you to get one of the internal, file-based datasources, so ‘type’ must be DELIMITED_FILES or

EXCEL_FILES. ‘area’ is PUBLIC, GROUP or PRIVATE.

List<PDataSource> getAllDataSources()

Returns a list of all available datasources.

List<PDataSource> getDataSources(PDataSourceType type)

Returns a list of all available datasources. If ‘type’ is not null then it will filter the datasource list based on

the supplied type.

PDataSource getDataSource(PObject table)

Returns the datasource that was originally used to load the specified table. This is required when, for

example, you want to reload that table again (it’s the same process that the GUI uses after you click “Load

New Version...”)

Getting the table definition

List<String> getDataSourceTableNames(PDataSource dataSource)

Returns a list of table names that are available to be loaded from the specified datasource. Names are case-

sensitive and it is exactly these that should be used when getting the definition for a specific table (see

below)

List<PDataSourceTable> getDataSourceTables(PDataSource dataSource)

As above but gets a list of the actual table definitions, rather than just their names. The name of a

datasource table definition can be obtained by calling PDataSourceTable.getName().

PDataSourceTable getDataSourceTable(PDataSource dataSource, String

tableName)

Get a table definition by name from the specified datasource (only useful in conjunction with

getDataSourceTableNames)

PDataSourceTable getDataSourceTable(PObject table)

Attempts to get the current table definition that can be used to reload the specified table. Again, all part of

the reload table process.

Scripting and REST interface Guide ©2018 Experian Page 37 of 141

Modifying the table definition

The most important methods in PDataSourceTable are:

getName() / setName(String) - fairly obvious what these do

 List<PDataSourceColumn> getColumns()

Returns a list of datasource columns. It is these that allow you to change properties on the

columns. PDataSourceColumn also has getName()/setName(). Alongside that it also has

getColumnMetadata(), which returns a ColumnMetaData object which can then be used to modify

properties of the columns.

deleteLastColumn() / addNewColumn()

These are direct analogies of what happens in the GUI when you add/delete columns on the right-hand side

in the source preview part of the loader wizard.

At this point, you can save this definition back to the corresponding XML in the import area by using

boolean saveTableConfiguration(PDataSourceType type, PDataSourceTable

table)

Note: If you are going to load the table anyway, then it is not necessary to save the configuration first.

Loading

Before loading anything, you’ll need to create a PLoadTableDefinition and then set the PDataSourceTable on

it, for example:

Assuming you have a PDatasSource in a variable called ‘dataSource’ and a PDataSourceTable in a variable

called ‘loadTable’:

loadDef = new PLoadTableDefinition();

loadDef.setTable(loadTable);

 And then load it, for example:

scheduleLoad(dataSource, loadDef);

The scheduleLoad method returns an int which is 0 if something went wrong or it’s the job id of the

loader job that has been successfully submitted. To reload a table, you can either use scheduleLoad

again, or you can use scheduleReload. For example:

scheduleReload(datasource, table, loadDef);

table is the table that should have been used to obtain the datasource and datasource table before calling

scheduleReload.

Scripting and REST interface Guide ©2018 Experian Page 38 of 141

Exporting a query

The flow of this is as follows:

1. Get the object (PObject)

2. Get the query to run (PQueryType)

3. Create a drilldown (PDrilldown)

4. Execute the drilldown

5. Create a PExportDefinition

6. Schedule the export using the executed drilldown and export definition

7. (OPTIONAL) Fetch the file back to the client

Get the object

There are a few methods which will help you do this:

PObject findObject(PObjectType type, String name);

PObject findObject(PObjectType type, String name, int version);

PObject findObject(PObjectType type, String name, PObject parent);

This allows you to find an object by its name. It also allows you to find a specific version of an object. The

final signature allows you to find an object by parent. For example, you could have two tables with different

names that both happen to have an email column, this method would allow you to get the correct column

out.

List<PObject> getObjects(PObjectType type);

List<PObject> getObjects(PObjectType type, SortOrder order);

List<PObject> getObjects(PObjectType type, String pattern);

List<PObject> getObjects(PObjectType type, String pattern, SortOrder

order);

This allows you to obtain a list of objects of a specified type. You can also have this list sorted by the

specified sort order, which can be UNSORTED, ASCENDING, or DESCENDING. You can also filter the list using

a regular expression.

The following method can be handy for obtaining a PObjectType:

PObjectType getObjectTypeForString(String type);

Scripting and REST interface Guide ©2018 Experian Page 39 of 141

Create and execute the Drilldown

The following methods can be used to create a drilldown:

PDrilldown createDrilldown(String query);

PDrilldown createDrilldown(PObject object, PQueryType type);

You can obtain a query string by calling the following method:

String getQueryForObject(PObject object, PQueryType type);

And you can obtain a list of supported query types by calling:

object.getAllowedQueryTypes();

Assuming you created a drilldown with one of the above methods called ‘drilldown’ you can execute the

drilldown using either of the following methods:

drilldown.run();

This will execute the drilldown in the current thread.

drilldown.execute();

This will execute the drilldown in a new thread. You can call

drilldown.isBusy();

in order to check whether the drilldown has finished executing.

Note: before you do anything with a drilldown you need to execute it.

Create the PExportDefinition

There are two constructors for the PExportDefinition class:

PExportDefinition();

PExportDefinition(String serverFileName);

PExportDefinition(ExportType exportType, String serverFilename, String

charsetName, boolean forceQuotes, char quoteCharacter,

ExportColumnNameStyle columnNameStyle, PivotOption pivotOption);

The empty constructor creates an export definition for a CSV export, a server file name of export, a charset

of UTF-8, not forcing quotes, double quotes as the quote character, DISPLAY_NAME export name style and

AUTOMATIC pivoting.

The PExportDefinition class contains getters and setters for all these variables.

Scripting and REST interface Guide ©2018 Experian Page 40 of 141

Schedule the export

There are two methods available to schedule an export:

scheduleExport(String query, String jobName, PExportDefinition

definition);

scheduleExport(PDrilldown drilldown, String jobName, PExportDefinition

definition);

These methods will return a 0 if they failed to schedule the export, or the job id if they succeeded.

Fetch the file back to the client

As the export saves the exported file to the export directory on the server, it may be useful to fetch the file

to the client. In order to do this, you need to use the following method:

fetchFile(String localFile, String remoteFile, DirName dir, boolean

deleteOnSuccess);

Exporting a report

The flow of this is as follows:

1. Get the object (PObject)

2. Get the Document to export

3. Schedule the export using the Document

Get the object

There are a few methods which will help you do this:

PObject findObject(PObjectType type, String name);

PObject findObject(PObjectType type, String name, int version);

PObject findObject(PObjectType type, String name, PObject parent);

This allows you to find an object by its name. It also allows you to find a specific version of an object. The

final signature allows you to find an object by parent. For example, you could have two tables with different

names that both happen to have an email column, this method would allow you to get the correct column

out.

List<PObject> getObjects(PObjectType type);

List<PObject> getObjects(PObjectType type, SortOrder order);

List<PObject> getObjects(PObjectType type, String pattern);

Scripting and REST interface Guide ©2018 Experian Page 41 of 141

List<PObject> getObjects(PObjectType type, String pattern, SortOrder

order);

This allows you to obtain a list of objects of a specified type. You can also have this list sorted by the

specified sort order, which can be UNSORTED, ASCENDING, or DESCENDING. You can also filter the list using

a regular expression.

The following method can be handy for obtaining a PObjectType:

PObjectType getObjectTypeForString(String type);

Get the document

There are methods to get each of the report types. The following methods each generate PDocument

objects:

PDocument getDashboard(PObject object);

This will create a validation dashboard for the given object. This will only work if it is possible to generate a

validation report for the object.

PDocument getMappingReport(PObject object);

PDocument getMappingReport(String query);

PDocument getMappingReport(PDrilldown drilldown);

These methods generate a mapping report for the specified object, query or drilldown, respectively. The first

method will only work on a table or a view.

PDocument getRelationshipReport(PObject relationship);

This will create a relationship report document for the given relationship object.

The following methods start off a job to create a PDocument object:

int scheduleNoteDocumentJob(PObject object, long time);

int scheduleNoteDocumentJob(PObject object);

These methods will create a document containing all of the notes on the specified object. The optional time

variable takes in the milliseconds of the time the job should start.

int scheduleQualityReportJob(PObject object, long time);

int scheduleQualityReportJob(PObject object);

These methods will create a quality report for the specified object, only if the object allows quality reports.

The optional time variable takes in the milliseconds of the time the job should start.

Both of these methods will return either 0, if it failed to schedule the job, or the job id if it was successful.

Scripting and REST interface Guide ©2018 Experian Page 42 of 141

If you have used one of the methods which kick off a job, the following method allows you to get the

resultant PDocument object:

PDocument getDocumentJobResult(int jobId);

Note: you will need to make sure the job has completed before attempting to retrieve the document

You can use the following method on an object to get a list of supported report types:

object.getAllowedReportTypes();

Export the document

The following two methods are supplied to export the document:

exportDocument(PDocument document, ExportType type, String filename,

boolean clip, PivotOption pivotOption, boolean mkdirs);

exportDocument(PDocument document, ExportType type, String filename,

boolean clip, PivotOption pivotOption);

As the documents rely on presentation and images, it is only possible to use the PDF or HTML export types

to export them. The mkdirs option tells the server whether or not to try and create directories in the

filename’s path if they do not already exist, this defaults to true.

Saving and Unsaving Relationships

The flow of this is as follows:

1. Get the objects (PObject)

2. Discover relationships (List<PObject>)

3. Save or unsave a relationship

Get the objects

There are a few methods which will help you do this:

PObject findObject(PObjectType type, String name);

PObject findObject(PObjectType type, String name, int version);

PObject findObject(PObjectType type, String name, PObject parent);

This allows you to find an object by its name. It also allows you to find a specific version of an object. The

final signature allows you to find an object by parent. For example, you could have two tables with different

names that both happen to have an email column, this method would allow you to get the correct column

out.

List<PObject> getObjects(PObjectType type);

Scripting and REST interface Guide ©2018 Experian Page 43 of 141

List<PObject> getObjects(PObjectType type, SortOrder order);

List<PObject> getObjects(PObjectType type, String pattern);

List<PObject> getObjects(PObjectType type, String pattern, SortOrder

order);

This allows you to obtain a list of objects of a specified type. You can also have this list sorted by the

specified sort order, which can be UNSORTED, ASCENDING, or DESCENDING. You can also filter the list using

a regular expression.

The following method can be handy for obtaining a PObjectType:

PObjectType getObjectTypeForString(String type);

Discover relationships

The following method can be used to discover relationships between the two objects:

List<PObject> findRelationships(PObject lhs, PObject rhs, int minQuality,

int minDomainQuality, boolean searchOutside, boolean ignoreDiscovered,

boolean ignoreSelfJoins);

lhs and rhs are the left-hand and right-hand-side objects that you have just found.

minQuality is the lowest quality of relationship to find, so all relationships returned should have quality

equal to or above this minimum quality.

minDomainQuality is the minimum domain quality for the column-to-column relationship.

searchOutside denotes whether or not to allow searching outside the objects provided. For example, where

one of the objects appears on at least one side of the relationship.

ignoreDiscovered denotes whether or not to ignore joins that have not been saved.

ignoreSelfJoins denotes whether or not to ignore joins between the same object.

This method will return a list of relationships that meet the given parameters, or null if it failed to find any.

Save or unsave a relationship

In order to save a relationship you should call the following method:

boolean saveRelationship(PObject relationship);

In order to unsave a relationship you should call the following method:

boolean unsaveRelationship(PObject relationship);

API Objects and Commands

Scripting and REST interface Guide ©2018 Experian Page 44 of 141

This section will detail the objects that Experian Pandora makes available to the scripts, and how to use

them.

Example scripts are provided in the installation. Please refer to the example scripts directory in your

installation for details.

Customising the Client UI

If you have defined a Java UI script, the container window can be customised by the script to change the

banner text, icon, and even add new buttons. The following commands can be used to achieve this:

addToolBarComponent

This code will allow a JavaScript script to add user-defined components (i.e. buttons) to the container

window, and allow them to define behaviour for them (i.e. when pressed).

importClass(com.experian.explorer.IconType);

importClass(com.experian.ui.util.Util);

…

container = pobjects.get(0);

…

tbbutton = Util.createToolBarButton(IconType.EXPORT);

var al = new ActionListener({

 actionPerformed: function(e) {

 print("toolbar button pressed");

 }

});

tbbutton.addActionListener(al);

container.addToolBarComponent(tbbutton);

setQueryTitle

This function allows the script to set the container window’s title text. For example:

pobject.setQueryTitle("This title was script-generated");

setQueryInfo

This function allows the script to set the container window’s sub-title text. For example:

pobject.setQueryInfo("This info was script-generated");

setQueryIconType

This function allows the script to set the icon displayed in the container window. For example:

pobject.setQueryIconType(com.experian.explorer.IconType.EXPORT);

setBackground

Scripting and REST interface Guide ©2018 Experian Page 45 of 141

This function allows the script to set the background colour of the container window’s canvas. For example:

pobject.getQueryContainer().setBackground(Color.WHITE);

PSession

The primary object for API communication with the server is the PSession object. This is created for you

whenever you use the PExecute command and is available as the variable session. Using PExecute the

session is disconnected automatically for you.

The following is a list of methods:-

abort

void abort()

Exits the running Java virtual machine (e.g. the PExecute command) and return the result code for

PSessionResult.ABORT

addTableToContainer

boolean addTableToContainer(PObject container, PObject table)

Adds a repository Table object to a container, which can be a SCHEMA, TABLE_VERSION_GROUP or a

PROJECT. Returns true if successful, false if an error occurred.

closeDrilldown

boolean closeDrilldown(PDrilldown drilldown)

Closes an active drilldown. Returns true if successful, false if an error occurred.

convertFixedToCsv

boolean convertFixedToCsv(String fixedFilename, String csvFilename, List<Integer> lengths, String

charset)

Converts fixed files to comma separated.

createDrilldown

PDrilldown createDrilldown (String query)

PDrilldown createDrilldown(PObject object, PQueryType type)

Scripting and REST interface Guide ©2018 Experian Page 46 of 141

Creates a new drilldown (PDrilldown) by executing an SQL query. This can be a formulated query string, or a

known query for a given object defined by the PQueryType enumeration.

Valid query types for any PObject can be found by calling the getAllowedQueryTypes() method of the

PObject.

createProject

PObject createProject(String name, String description)

Creates a new Project in the repository. The new Project is returned or null if the creation failed. Note that a

name change may occur if the name supplied is already in use in the repository.

createSchema

PObject createSchema(String name, String description)

Creates a new Schema in the repository. The new Schema is returned or null if the creation failed. Note that

a name change may occur if the name supplied is already in use in the repository.

createUnionQuery

String createUnionQuery(Collection<PObject> objects);

String createUnionQuery(PObject… objects);

String createUnionQuery(PObject object);

Creates a dynamic union query between any number of objects

deleteJob

boolean deleteJob(int jobId)

Deletes a job from the scheduler given the sequence id of the job. Returns true if the deletion worked or

false if it did not.

deleteObject

boolean deleteObject(PObject object)

Deletes the object provided from the repository. Returns true if the deletion worked, or false if it

did not. This cannot be used for deleting tables, to do that you should use scheduleTableDeletion.

This also cannot be used to delete a table group.

Scripting and REST interface Guide ©2018 Experian Page 47 of 141

didJobComplete

boolean didJobComplete(int jobId)

Checks whether or not the job with id jobId completed. Returns true if it did or false if it did not.

disableMultipleVersions

boolean disableMultipleVersions(PObject object)

Disables multiple versions for the specified object. This object can only be a table version group.

Returns true if multiple versions were successfully disabled and false if they were not.

disableUser

boolean disableUser(PUser user)

Disables the user provided. A user can be obtained by using findObject to get the PObject of the

user and then creating a new PUser object either from the name or id of the PObject. Returns true

if the user was successfully disabled and false if it was not.

enableMultipleVersions

boolean enableMultipleVersions(PObject object)

Enables multiple versions for the specified object. This object can only be a table. Returns true if

multiple versions were successfully enabled and false if they were not.

enableUser

boolean enableUser(PUser user)

Enables the user provided. Returns true if the user was successfully enabled and false if it was not.

encryptPassword

static String encryptPassword(String password)

Encrypts a plain password. Returns the encrypted password.

exit

void exit()

Exits the current java virtual machine with the result code of the last operation.

Scripting and REST interface Guide ©2018 Experian Page 48 of 141

exitOk

void exitOk()

Exits the current java virtual machine with the OK result code.

exportDocument

boolean exportDocument(PDocument document, ExportType type, String filename, boolean clip,

PivotOption pivotOption)

boolean exportDocument(PDocument document, ExportType type, String filename, boolean clip,

PivotOption pivotOption, boolean mkdirs)

Exports the supplied document and puts the resulting file into the path defined by filename. If the

filename has no path, the file will be put into the script’s working directory. type can be either PDF

or HTML. If the filename does not have the correct extension, it will be appended on to the end.

pivotOption can either be AUTOMATIC, YES, or NO. The optional boolean mkdirs defines whether

the directory in the filename should be created if it does not exist, this defaults to true. Returns

true if the export succeeded and false if it failed.

fetchFile

boolean fetchFile(String localfile, String remotefile, DirName dir, boolean deleteOnSuccess)

Moves a file, defined by remotefile, from the specified server directory, defined by the dir, to a file

on the client, defined by localfile. If deleteonsuccess is set to true the file will be deleted if the

movement is a success, if it is set to false it will not.

fileExists

boolean fileExists(String filename)

boolean fileExists(String logicalDirName, String filename)

Returns true if a server file exists, false if it does not. Either a full qualified path name can be used or a

relative file in a server logical directory. Relevant logical directories are:

Directory Name Description
TEMP Temporary files

IMPORT Public import files.

EXPORT Exported files.

CONTENT Domain content files.

METADATA Metadata files.

DRIVERS_JDBC JDBC driver files.

findColumn

Scripting and REST interface Guide ©2018 Experian Page 49 of 141

PObject findColumn(PObject table, String name)

Finds the column on the given table with the name provided. Returns null the column was not

found or if an error occurred.

findDefinitionForFile

PLoadTableDefinition findDefinitionForFile(PDataSource dataSource, String name)

Finds the table definition for the file with the specified name in the specified dataSource.

findObject

PObject findObject(PObjectType type, String name)

PObject findObject(PObjectType type, String name, int version)

PObject findObject(PObjectType type, String name, PObject parent)

Finds a repository object with a given name, with an optional version for versioned objects and an optional

parent for objects that can have the . Returns null if not found or if an error occurred.

For example, if you wanted to find a Table called Mountains you would use the following code:

mountains = psession.findObject(PObjectType.TABLE, “Mountains”);

If Mountains had 3 versions and you wanted to find version 2, you would use the following code:

Mountains2 = psession.findObject(PObjectType.TABLE, “Mountains”, 2);

Alternatively, you could use the following:

Mountains2 = psession.findObject(PObjectType.TABLE, “Mountains:2”);

Finally, if you have saved a view on table mountains called “Mountains in Wales” and you wanted to find

that, you would use the following:

height = psession.findObject(PObjectType.VIEW, “Mountains_in_Wales”,

mountains);

assuming that you used the code above to get mountains.

findRelationships

List<PObject> findRelationships(PObject lhs, PObject rhs, int minQuality, int minDomainQuality,

boolean searchOutside, boolean ignoreDiscovered, boolean ignoreSelfJoins)

Find relationships between two objects. These can be projects, schemas, table version groups,

tables or columns. Returns a list of the relationships found.

Scripting and REST interface Guide ©2018 Experian Page 50 of 141

getAllDataSources

List<PDataSource> getAllDataSources()

Returns a list of all the datasources.

getArgument

Object getArgument(String name, Object defaultValue)

Returns the value associated with the command line argument with the given name. If an argument

with that name does not exist, then defaultValue is returned.

getDashboard

PDocument getDashboard(PObject object)

Gets a document containing the validation dashboard for the supplied object. It must be possible to

validate the supplied object. Returns the document.

getDataSource

PDataSource getDataSource(PObject table)

Gets the datasource for the table supplied. Returns the datasource. This method is useful for

reloading a table.

getDataSourceTable

PDataSourceTable getDataSourceTable(PDataSource dataSource, String tableName)

PDataSourceTable getDataSourceTable(PObject table)

Gets the PDataSourceTable from the dataSource specified, using the tableName provided or gets

the PDataSourceTable for the table provided. Returns the PDataSourceTable.

getDataSourceTableNames

List<String> getDataSourceTableNames(PDataSource dataSource)

Gets the names of the tables within the specified dataSource and returns a list of them.

getDataSourceTables

List<PDataSourceTable> getDataSourceTables(PDataSource dataSource)

Gets the PDataSourceTables from the specified dataSource and returns them as a list.

Scripting and REST interface Guide ©2018 Experian Page 51 of 141

getDataSources

List<PDataSource> getDataSources(PDataSourceType type)

Gets all the datasources of the specified type and returns them as a list. If type is null then all the

datasources are returned.

getDescribedDrilldown

PDrilldown getDescribedDrilldown(PDrilldown drilldown)

Returns a new drilldown that is a description of the drilldown specified. Note that a drilldown must

have been run or executed before it can be described.

getDocumentJobResult

PDocument getDocumentJobResult(int jobId)

Returns the result of the document job with id jobId.

getHostname

String getHostname()

Returns the hostname used for the initial connection.

getImportAreaByName

PImportArea getImportAreaByName(String name)

Returns the import area for the given name. Defaults to PImportArea.PUBLIC.

getInternalDataSource

PDataSource getInternalDataSource(PDataSourceType type, PImportArea area)

Returns the datasource for the specified datasource type and import area. Type can be

DELIMITED_FILES, JDBC or EXCEL_FILES. Area can be PUBLIC, GROUP or PRIVATE.

getJob

PJob getJob(int jobId)

Returns a PJob object for a scheduled job with the given sequence id. Returns null if an error occurred.

Scripting and REST interface Guide ©2018 Experian Page 52 of 141

getJobProgress

int getJobProgress(int jobId)

Returns the progress of the job with the specified jobId. Returns -1 if an error occurred.

getJobs

List<PJob> getJobs(PUser user)

Returns a list of jobs for the specified user, or null if an error occurred.

getLastErrorMessage

String getLastErrorMessage()

Returns the last error message (from the last operation). This is cleared after each new operation.

getLastResult

PSessionResult getLastResult()

Returns the last result (PSessionResult) for the last operation. This is cleared after each new operation.

getLastResultCode

int getLastResultCode()

Returns the last result code for the last operation. This is cleared after each new operation.

getLicenseDetails

PLicense getLicenseDetails()

Returns a PLicense object with details of the server license. Returns null if an error occurred.

getLogicalDirPath

String getLogicalDirPath(String name)

String getLogicalDirPath(DirName name)

Returns the path for a named logical directory on the server.

getMappingReport

PDocument getMappingReport(PObject object)

Scripting and REST interface Guide ©2018 Experian Page 53 of 141

PDocument getMappingReport(String query)

PDocument getMappingReport(PDrilldown drilldown)

Returns the mapping document for the specified object, query or drilldown. The object must be a

Table or a View. Returns null if the operation failed.

getObjects

Collection<PObject> getObjects(PObjectType type)

Collection<PObject> getObjects(PObjectType type, SortOrder order)

Collection<PObject> getObjects(PObjectType type, String pattern)

Collection<PObject> getObjects(PObjectType type, String pattern, SortOrder order)

Returns a list of objects of the specified type with an optional sort order and conforming to an

optional pattern. Order can be ASCENDING, DESCENDING or UNSORTED and will default to

UNSORTED. If a pattern is specified, then the list will only contain objects of the specified type

whose name matches the pattern.

For example, if you wanted to get a list of all the tables in the database, you would call:

tables = getObjects(PObjectType.TABLE);

If you wanted a list of all the tables in alphabetical order, you would call:

alphaTables = getObjects(PObjectType.TABLE, SortOrder.ASCENDING);

Finally, if you wanted a list of all the tables whose names begin with an ‘A’, you would call:

aTables = getObjects(PObjectType.TABLE, “^A.*”);

getObjectTypeForString

PObjectType getObjectTypeForString(String typeName)

Returns the PObjectType enumeration for a given object type string. This is more forgiving than doing

PObjectType.valueOf(). Returns null if no match can be found.

getPort

int getPort()

Returns the port used to connect to the server.

Scripting and REST interface Guide ©2018 Experian Page 54 of 141

getProductInformation

PProductInfo getProductInformation()

Returns product information for the application.

getQueryForObject

String getQueryForObject(PObject object, PQueryType type)

Returns the SQL query string for a given query type (PQueryType) for a given repository object (PObject) if

the query is valid for that object. Returns null if an error occurred.

getRelationshipReport

PDocument getRelationshipReport(PObject relationship)

Returns the relationship report for the specified relationship, or null if the operation fails.

getResultForCode

static PSessionResult getResultForCode(int code)

Returns the session result for the specified code.

getReturnValue

Object getReturnValue()

Returns the return value

getServerUptime

long getServerUptime()

Returns the number of milliseconds that the server application has been running since last restart.

getSqlTableName

String getSqlTableName(PObject object)

Returns the SQL name for the given object. The object must be a table.

getSummaryDrilldown

PDrilldown getSummaryDrilldown(PDrilldown drilldown)

Scripting and REST interface Guide ©2018 Experian Page 55 of 141

Returns a new drilldown that is a summarisation of the drilldown provided, or null if the operation

failed.

getTableJoin

PObject getTableJoin(PObject lhColumn, PObject rhColumn)

PObject getTableJoin(PObject lhColumn, PObject rhColumn, int delay)

PObject getTableJoin(PObject lhTable, String lhColumnName, PObject rhTable, String

rhColumnName)

PObject getTableJoin(PObject lhTable, String lhColumnName, PObject rhTable, String

rhColumnName, int delay)

Returns the relationship object for the join between the lhColumn and the rhColumn with an

optional delay. The delay is designed to be used directly after a load to allow the server some time

to find the joins for the newly loaded table(s). The columns can optionally be specified using the

lhTable or rhTable object and their respective names. Returns null if no relationship could be found

or an error occurred.

getTableNameForQuery

String getTableNameForQuery(PObject object, PQueryType type)

Returns the name of the table for the specified query type on the specified object. Returns null if

the query type is not supported by the object, or if an error occurred.

getTimeNow

long getTimeNow()

Returns the time now in milliseconds on the server.

getURLPrefix

String getURLPrefix()

Returns the URL prefix for the server’s REST engine

getUser

PUser getUser()

Returns the User object for the user you logged in as.

Scripting and REST interface Guide ©2018 Experian Page 56 of 141

getUsername

String getUsername()

Returns the username used to login with.

isCompressionEnabled

void abort()

Returns whether compression is being used in the communication stream. This is handled automatically and

cannot be enabled or disabled manually.

isDebug

boolean isDebug()

Returns whether or not the session is in debug mode

isError

boolean isError()

Returns whether or not the last request resulted in an error.

isJobRunning

boolean isJobRunning(int jobId)

Returns whether or not the job with the specified jobId is running.

killSession

boolean killSession(long id)

Kills the session with the specified session id. Returns true if the operation was successful or false if

it was not.

logoutUser

boolean logoutUser(PUser user, String reason, int timeout)

Logs out the specified user after the specified timeout, giving them the specified reason. Returns

true if the operation was successful or false if it was not.

Scripting and REST interface Guide ©2018 Experian Page 57 of 141

pingServer

boolean pingServer()

Pings the server to see if it is up and to keep it alive. Returns true if the server responds or false if it

does not.

print

void print(String message)

Prints a message out to standard output. Shortcut for System.out.println();

printResult

void printResult()

static void printResult(PSessionResult result, String message, String extraMessage)

void print Result(String extraMessage)

Prints a formatted result message for a given result (PSessionResult), with an optional message and extra

message. The alternate form uses the last result and message automatically. If not specified, the

extraMessage defaults to an empty String.

removeTableFromContainer

boolean removeTableFromContainer(PObject container, PObject table)

Removes the given table from the given container. The table can be either a Table or a Table

Version Group. The container can be a Table Version Group, a Project or a Schema. If the container

is a Table Version Group then the table can only be a Table.

requeueJob

boolean requeueJob(int jobId)

Requeues the job with the specified jobId. Returns true if the operation is successful, or false if it is

not.

saveAsQuery

PObject saveAsQuery(PDrilldown drilldown, String name, String description, boolean overwrite)

Creates a Saved Query from the drilldown specified, with the name and description specified. If

overwrite is true, then the object will be created regardless of whether or not an object with the

Scripting and REST interface Guide ©2018 Experian Page 58 of 141

same name exists already, otherwise the creation will only succeed if no Saved Queries with the

same name already exist. Returns the newly-created object, or null if the operation fails.

saveAsView

PObject saveAsView(PDrilldown drilldown, String name, String description, boolean overwrite)

Creates a View from the drilldown specified, with the name and description specified. If overwrite

is true, then the object will be created regardless of whether or not an object with the same name

exists already, otherwise the creation will only succeed if no Views with the same name already

exist. Returns the newly-created object, or null if the operation fails.

saveRelationship

boolean saveRelationship(PObject relationship)

Saves the given relationship if it is not already saved. Returns true if the operation succeeds or

false if it fails.

saveTableConfiguration

boolean saveTableConfiguration(PDataSourceType type, PDataSourceTable table)

Saves the load configuration specified in the PDataSourceTable for later use. Note: if you are going

to load the table anyway, then you do not need to call this method.

scheduleExport

int scheduleExport(String query, String jobName, PExportDefinition definition)

int scheduleExport(PDrilldown drilldown, String jobName, PExportDefinition definition)

Schedules an export job with the given jobName on the given query or drilldown as per the export

definition. Returns the job id if the job has been successfully scheduled, otherwise returns 0.

scheduleLoad

int scheduleLoad(PLoadTableDefinition definition)

int scheduleLoad(PDataSource dataSource, PLoadTableDefinition definition)

int scheduleLoad(PDataSource dataSource, PLoadTableDefinition definition, String tableName)

Schedules a load job for the specified load table definition from the specified dataSource with an

optional tableName. Returns the job id if the job has been successfully scheduled otherwise returns

0.

Scripting and REST interface Guide ©2018 Experian Page 59 of 141

scheduleNoteDocumentJob

int scheduleNoteDocumentJob(PObject object)

int scheduleNoteDocumentJob(PObject object, long time)

Schedules a job to create the note report for the specified object. The optional time parameter

allows you to choose when to start the job by giving the milliseconds of the required date and time.

The default is the current time. Returns the job id if the job has been successfully scheduled

otherwise returns 0.

scheduleQualityReportJob

int scheduleQualityReportJob(PObject object)

int scheduleQualityReportJob(PObject object, long time)

Schedules a job to create a quality report for the specified object. The object must be a Table. The

optional time parameter allows you to choose when to start the job by giving the milliseconds of

the required date and time. Default is current time. Returns the job id if the job has been

successfully scheduled otherwise returns 0.

scheduleReload

int scheduleReload(PDataSource dataSource, PObject table, PLoadTableDefinition definition)

Schedules a load job to reload the specified table from the specified dataSource with the specified

definition. Returns the job id if the job has been successfully scheduled otherwise returns 0.

scheduleSaveAsTable

int scheduleSaveAsTable(PObject schema, PObject project, PDrilldown drilldown, String name,

String description, long startTimestamp, boolean enableTokens, TableStorageType type)

int scheduleSaveAsTable(PObject schema, PObject project, PDrilldown drilldown, String name,

String description)

int scheduleSaveAsTable(PObject projectOrSchema, PDrilldown drilldown, String name, String

description)

int scheduleSaveAsTable(PDrilldown drilldown, String name, String description)

Schedules a load job to save the specified drilldown as a table with the specified name and

description. The table can optionally be loaded into a the specified project or schema and the values

can optionally be tokened. It can also be given an optional table storage type. This can be one of

Scripting and REST interface Guide ©2018 Experian Page 60 of 141

READ_ONLY, APPENDABLE, TRANSACTIONAL, ARCHIVED_INDEXED or ARCHIVED. Returns the job id if the

job has been successfully scheduled otherwise returns 0.

scheduleTableDeletion

int scheduleTableDeletion(String name, String reason)

int scheduleTableDeletion(String name, int version, String reason)

int scheduleTableDeletion(PObject table, String reason)

Schedules a delete job for Table. Either the name of a Table (with optional version) can be used, or a

repository object for the Table can be used. Returns 0 if the scheduling did not occur. A mandatory reason

for deletion must be supplied.

scheduleTableValidation

List<Integer> scheduleTableValidation(List<PObject> tables)

Schedules a validation job for each table in the specified list of tables. Returns the job id if the job

has been successfully scheduled otherwise returns 0.

sendDomainFile

boolean sendDomainFile(String localfile, String remotefile, boolean overwrite)

Sends the localfile to the content folder on the server with the name remotefile. If remotefile

already exists and overwrite is true then it will be overwritten, otherwise the operation will fail.

Returns true if the operation succeeds or false if the operation fails.

sendFileForLoad

boolean sendFileForLoad(String localfile, String remotefile, PImportArea area, boolean overwrite)

Sends the localfile to the import area folder on the server with the name remotefile. If remotefile

already exists and overwrite is true then it will be overwritten, otherwise the operation will fail.

Area can be PImportArea.PUBLIC, PImportArea.GROUP or PImportArea.PRIVATE. Returns true if

the operation succeeds or false if the operation fails.

setDebug

void setDebug(boolean debug)

Allows the user to enable or disable debug mode on the session. In debug mode, exceptions will be

printed out. This is false by default.

Scripting and REST interface Guide ©2018 Experian Page 61 of 141

setReturnValue

void setReturnValue(Object value)

Sets the return value.

shutdownServer

boolean shutdownServer(int delay)

Shuts down the server after delay seconds.

startJob

boolean startJob(int jobId)

Starts a scheduled job which is waiting for a start time that has not been reached yet. Returns false if the

operation failed and true if it worked.

stopJob

boolean stopJob(int jobId)

Stops a running scheduled job. Returns false if the operation failed and true if it worked.

unsaveRelationship

boolean unsaveRelationship(PObject relationship)

Unsaves the specified relationship.

waitForJob

PJob waitForJob(int jobId)

Returns the job with the given jobId. Returns null if the job failed, was stopped or aborted, or if an

error occurred.

PObject

This is a generic object representing a repository metadata object. PObjects implement the Comparable

interface for easy comparison. As the information recorded for repository objects varies with the type of

object, the different parameters are implemented as a map of properties (defined by the PProperty

enumeration). A PProperty has a type defined by the PPropertyType enumeration. Property values

themselves are plain objects, and it is up to the caller to cast them appropriately.

Scripting and REST interface Guide ©2018 Experian Page 62 of 141

addPropertyToJSONObject

void addPropertyToJSONObject(JSONObject jsonObject, PProperty key, Collection<String>

upropertyKeys)

void addPropertyToJSONObject(JSONObject jsonObject, PProperty key, Object value,

Collection<String> upropertyKeys)

static void addPropertyToJSONObject(PProperty pobj, JSONObject jsonObject, PPropertyKey key,

Object value, Collection<String> upropertyKeys)

throws JSONException

Adds the key to the jsonObject with an optional value. The list of upropertyKeys is used to filter

user_property by the supplied keys, this can be null.

compareTo

int compareTo(PObject that)

Compares the object with another PObject return -1, 0 or 1 depending on whether this object is smaller,

equal to or greater than the other one.

getAllowedQueryTypes

List<PQueryType> getAllowedQueryTypes()

Returns a list of PQueryType enumerations which are the types of query allowed by the object.

getAllowedReportTypes

List<PReportType> getAllowedReportTypes()

Returns a list of PReportTypes. These are the reports that it is possible to get for the object.

getById

static PObject getById(long id)

throws PException

Returns the repository object with the specified id.

getChildren

Collection<PObject> getChildren(PObjectType type, String pattern, SortOrder order)

Scripting and REST interface Guide ©2018 Experian Page 63 of 141

throws PException

Returns a collection of child objects of a given type for an object, optionally sorted and optionally with their

names filtered by a regular expression pattern. For example, this can be used to get the Columns for a Table.

Valid values of SortOrder are:-

ASCENDING, DESCENDING, UNSORTED

getCreatedAction

PUserAction getCreatedAction()

Returns the PUserAction for the creation event for this object. A PUserAction provides details of who, when

and why something was done.

getDefaultQuery()

String getDefaultQuery()

 throws PException

Returns the default query action for the object. This is the same as the query provided in the user interface

when the object icon is clicked on.

getId()

long getId()

throws PException

Returns the unique 64 bit identifier for the repository object.

getObjects

static List<PObject> getObjects(PObjectType type)

static List<PObject> getObjects(PObjectType type, SortOrder order)

static List<PObject> getObjects(PObjectType type, String pattern)

static List<PObject> getObjects(PObjectType type, String pattern, SortOrder order)

throws PException

Static methods to return all objects of a given type from the repository, with an optional regular expression

filter pattern and an optional sort order. Valid values of SortOrder are:-

ASCENDING, DESCENDING, UNSORTED

Scripting and REST interface Guide ©2018 Experian Page 64 of 141

getProperty

Object getProperty (PProperty type)

Returns the value of a repository object property

getQuery

String getQuery(PUser user, PQueryType type)

throws PException

Returns the SQL query string for a given enumerated query type.

getType

PObjectType getType()

Returns the type of repository object as a PObjectType. A list of these can be found at the /types/object.html

REST url, or can be obtained by calling PObjectType.values().

iterator

Iterator<PProperty> iterator()

Allows the user to iterate through the properties in a PObject. Returns the iterator for the

properties.

toJSON

JSONObject toJSON(Collection<PProperty> keys, Collection<String> upropertyKeys)

JSONObject toJSON()

throws JSONException

Converts the object to a JSON representation. The optional parameters, keys and upropertyKeys, are used

to specify which properties and user properties the user wishes to include in the object.

toJSONArray

static JSONArray toJSONArray(Collection<PObject> objects)

Returns a JSONArray containing the JSON representation for each of the objects provided.

toJSONBrief

JSONObject toJSONBrief()

Scripting and REST interface Guide ©2018 Experian Page 65 of 141

Converts the object to a JSON representation in brief form.

PObjectType

This object defines the types of object found in the server. It is used when calling other functions that

require a PObjectType to be passed. For example, the findObject function requires the name and type of an

object in order to find it, and the type needs to be defined in the PObjectType object:

scriptObj = psession.findObject(PObjectType.SCRIPT, scriptName);

A list of valid PObjectTypes can be found at the /types/object.html REST url, or can be obtained by calling

PObjectType.values().

PQueryType

This object defines the query types that can be found in the server. It is used when calling other functions

that require a PQueryType to be passed. For example, when creating a drilldown, the type of drilldown

needs to be defined along with the object that contains the drilldown:

var drilldown = psession.createDrilldown(pobject, PQueryType.ROW)

A list of all possible PQueryTypes can be found by either going to the /queries/type.html url on the REST

server, or printing out the values returned by PQueryType.values().

PDrilldown

This manages the execution of SQL queries to the database providing access to the results.

close

void close()

throws PException

Closes an active drilldown

execute

void execute()

throws PException

Executes the drilldown in a separate thread.

forwardIterator

Iterator<PDataRow> forwardIterator

Scripting and REST interface Guide ©2018 Experian Page 66 of 141

Provides an iterator for stepping through the rows of a query in forward order

getAllColumns

List<ColumnDefinition> getAllColumns()

Returns a list of all columns in the database table being queried, whether visible or not.

getByName

ColumnDefinition getByName(String name)

Returns a column in the query by name

getCell

PDataCell getCell(long row, int column)

Returns a data cell at a given row/column position.

getColumnCount

int getColumnCount()

Returns the count of visible columns in the table being queried.

getColumns

List<ColumnDefinition> getColumns()

Returns the list of visible columns in the query

getDescription

String getDescription()

Returns the description for the query.

getFilter

ColumnFilter getFilter()

Returns the filter that the drilldown will use when deciding which columns to return.

getFilteredColumns()

List<ColumnDefinition> getFilteredColumns()

Scripting and REST interface Guide ©2018 Experian Page 67 of 141

Returns a list of columns, filtered using the column’s filter.

getProgress

int getProgress()

If the drilldown is being executed, then this method returns the progress of the execution,

otherwise it returns 0.

getQuery

String getQuery()

Returns the query for this drilldown.

getRow

PDataRow getRow(long rowId)

Returns an entire row at a given row number.

getRowCount

long getRowCount()

Returns the count of rows for the query.

getTableName

String getTableName()

Returns the name of the table for the executed drilldown.

getTimestamp

long getTimestamp()

Returns the timestamp for the query which can be used to detect changes on reapplication.

getTitle

String getTitle()

Returns the descriptive title for the query.

hasExecuted

Scripting and REST interface Guide ©2018 Experian Page 68 of 141

boolean hasExecuted()

Returns true if the drilldown has been executed, or false if it has not.

isBusy

Boolean isBusy()

Denotes if the query activity is currently busy, i.e. still executing

isReverseOrder

boolean isReverseOrder()

Denotes if default row iteration is in reverse order.

iterator

Iterator<PDataRow> iterator()

Returns the current iterator (which may or may not be reverse ordered).

reverseIterator

Iterator<PDataRow> reverseIterator

Provides an iterator to stepping through the the rows of a query in reverse order.

run

void run()

executes the drilldown in the same thread

setFilter

void setFilter(ColumnFilter filter)

Sets the filter that the drilldown will use when deciding which columns to return.

setReverseOrder

void setReverseOrder(boolean reverse)

Sets default iteration to be reverse or not reverse (forward).

toDocumentTable

Scripting and REST interface Guide ©2018 Experian Page 69 of 141

PDocTable toDocumentTable(Color headingColour, DocumentTableStyle style, long startRow, int

rowCount, boolean wordWrap, int columnCount, boolean addRows)

PDocTable toDocumentTable(Color headingColour, DocumentTableStyle style, long startRow, int

rowCount, boolean wordWrap, int columnCount)

PDocTable toDocumentTable(long startRow, int rowCount, int columnCount, boolean addRows)

PDocTable toDocumentTable(long startRow, int rowCount)

PDocTable toDocumentTable(int rowCount)

Creates a table that can be used to export this drilldown as a part of a document.

Scripting and REST interface Guide ©2018 Experian Page 70 of 141

PDataRow

This is the representation of a row of data in the results of a drilldown/query. The data row is mutable.

getDataCell

PDataCell getDataCell(int column)

Returns the cell value for a given column index.

iterator

Iterator<PDataCell> iterator

Returns an iterator to iterator over the cells in the row.

size

int size()

Returns the size of the row, in numbers of cells.

toCsv

String toCsv()

Converts the row to a line of comma-separated-values.

toJSON

JSONObject toJSON(List<ColumnDefinition> columns)

Converts the row to a JSON object.

PDataCell

This object represents a generic value at a cell location (row, column position) in the results of a query.

clear

void clear()

Resets the cell to its initial state.

Scripting and REST interface Guide ©2018 Experian Page 71 of 141

getBackground

Color getBackground()

Return the background color for the cell

getDatatype

byte getDatatype()

Return the datatype for the cell. Valid values are:-

getForeground

Color getForeground()

Returns the foreground color for the cell.

getIcon

IconType getIcon()

Returns the icon enumeration for the cell.

getId

long getId()

Returns the id of a repository object that is associated with the cell value.

getMode

RenderMode getMode()

Returns the rendering mode for the cell.

Type Definition
Datatype.UNKNOWN Unknown or not set, used for auto-typing

Datatype.INTEGER Integer values

Datatype.DATE Date/Time values

Datatype.DECIMAL Decimal values

Datatype.MONEY Monetary values

Datatype.ALPHANUMERIC Any value that does not fit into INTEGER, DATE, DECIMAL or MONEY types

Datatype.NULL Null

Scripting and REST interface Guide ©2018 Experian Page 72 of 141

getPresentation

String getPresentation()

Returns the display presentation for the value, i.e. what is seen by the user.

getType

CellType getType()

Returns the type of the cell. Valid values of the CellType enumeration are:-

VALUE, WARNING, ERROR

getValue

Object getValue()

Returns the value in the cell

isAutocasted

boolean isAutocasted

Returns whether or not the datacell has been autocasted.

isObfuscated

boolean isObfuscated()

Denotes if the cell is obfuscated

set

void set(byte datatype, Object object, String presentation)

void set(PDataCell cell)

void set(String value)

void set(String value, String presentation)

void set(BigInteger value)

void set(BigInteger value, String presentation)

void set(Long value)

void set(Long value, String presentation)

Scripting and REST interface Guide ©2018 Experian Page 73 of 141

void set(Integer value)

void set(Integer value, String presentation)

void set(Short value)

void set(Short value, String presentation)

void set(Byte value)

void set(Byte value, String presentation)

void set(BigDecimal value)

void set(Double value)

void set(Double value, String presentation)

void set(Float value)

void set(Float value, String presentation)

void set(DateAndTIme value)

void set(DateAndTime value, String presentation)

void set(Money value)

void set(Money value, String presentation)

Sets the value of the cell using a variety of signatures for different object types with an optional presentation

that is different to that of the stored value.

setAutoCast

void setAutoCast(boolean setting)

Sets whether or not to autocast the cell, using setting.

setBackground

void setBackground(Color background)

Sets the background color for the cell.

Scripting and REST interface Guide ©2018 Experian Page 74 of 141

setError

void setError(String message)

Sets the cell value to be an error message.

setForeground

void setForeground(Color foreground)

sets the foreground color for the cell

setIcon

void setIcon(IconType icon)

Sets the icon image using the IconType enumeration

setId

void setId(long id)

Sets the associated object id for the cell value.

setMode

void setMode(RenderMode mode)

Sets the rendering mode for the cell.

setObfuscated

void setObfuscated(boolean obfuscated)

Sets the obfuscated flag for the cell.

setPresentation

void setPresentation(String presentation)

Sets the presentation for the cell which can be different to the actual underlying value.

setWarning

void setWarning(String message)

Sets the cell value to be a warning message.

Scripting and REST interface Guide ©2018 Experian Page 75 of 141

toCsvString

String toCsvString()

Converts the cell to a comma-separated value.

toJSON

JSONObject toJSON()

Converts the cell to a JSON representation.

ColumnDefinition

This is the definition of a column in a drilldown.

getAlias

String getAlias()

Returns the alias of the column.

getBackground

Color getBackground()

Returns the background color of the column.

getDatatype

byte getDatatype()

Returns the datatype of the column.

getDisplayFormat

String getDisplayFormat()

Returns the display format of the column. This should be used to format the values of the cells for that

column.

getDisplayName

String getDisplayName()

Returns the display name for the column.

Scripting and REST interface Guide ©2018 Experian Page 76 of 141

getExpectedFormat

String getExpectedFormat()

Returns the expected format of the column.

getFalseText

String getFalseText()

Returns the text to display if the value is a boolean false value.

getFontDefinition

String getFontDefinition()

Returns the definition of the font used in the column.

getForeground

Color getForeground()

Returns the foreground color for the column.

getHeadingBackground

Color getHeadingBackground()

Returns the background color for the column’s heading.

getHeadingForeground

Color getHeadingForeground()

Returns the foreground color for the column’s heading.

getIndex

int getIndex()

Returns the column’s index.

getLineWeight

LineWeight getLineWeight(LinePosition side)

Scripting and REST interface Guide ©2018 Experian Page 77 of 141

Returns the line weight of the line on the specified side. Possible values for LinePosition are TOP, LEFT,

BOTTOM or RIGHT. Possible values for LineWeight are NONE, NORMAL, MEDIUM, HEAVY. Each line weight

has a color associated with it that can be obtained by calling getColor().

getLocale

Locale getLocale()

Returns the Locale of the column.

getMaxLength

int getMaxLength()

Returns the length of the longest value in the column.

getMaxValue

Object getMaxValue()

Returns the maximum value in the column.

getMinValue

Object getMinValue()

Returns the minimum value in the column.

getMode

RenderMode getMode()

Returns the render mode for the column.

getName

String getName()

Returns the name of the column

getPrecision

int getPrecision()

Returns the precision of the column.

Scripting and REST interface Guide ©2018 Experian Page 78 of 141

getScale

int getScale()

Returns the scale of the column.

getTrueText

String getTrueText()

Return the text to display if the value is a boolean true value.

getUniqueThreshold

int getUniqueThreshold()

Returns the unique threshold of the column.

getWidth

int getWidth()

Returns the width of the column.

isNullable

boolean isNullable()

Returns whether or not the column is allowed to contain null values.

isShowHints

boolean isShowHints()

Returns whether or not hints should be shown

isShowingHints

boolean isShowingHints()

Returns whether or not hints are being shown

isVisible

boolean isVisible()

Returns whether or not the column is visible.

Scripting and REST interface Guide ©2018 Experian Page 79 of 141

setAlias

void setAlias(String alias)

Sets the alias of the column.

setBackground

void setBackground(Color background)

Sets the background color for the column.

setDatatype

void setDatatype(byte datatype)

Sets the datatype of the column.

setDisplayFormat

void setDisplayFormat(String displayFormat)

Sets the format to use when displaying the column’s values.

setExpectedFormat

void setExpectedFormat(String expectedFormat)

Sets the expected format.

setFalseText

void setFalseText(String falseText)

Sets the text to display if the value is a boolean value false.

setFontDefinition

void setFontDefinition(String fontDefinition)

Sets the font definition.

setForeground

void setForeground(Color foreground)

Sets the foreground color of the column.

Scripting and REST interface Guide ©2018 Experian Page 80 of 141

setHeadingBackground

void setHeadingBackground(Color headingBackground)

Sets the background color for the column’s heading.

setHeadingForeground

void setHeadingForeground(Color headingForeground)

Sets the foreground color for the column’s heading.

setIndex

void setIndex(int index)

Sets the index of the column.

setLineWeight

void setLineWeight(LineWeight left, LineWeight top, LineWeight right, LineWeight bottom)

Sets the line weight that should be used when rendering the border on each side.

setLocale

void setLocale(Locale locale)

Sets the locale of the column.

setMaxLength

void setMaxLength(int maxLength)

Sets the maximum value length of the column.

setMaxValue

void setMaxValue(Object maxValue)

Sets the maximum value of the column.

setMinValue

void setMinValue(Object minValue)

Sets the minimum value of the column.

Scripting and REST interface Guide ©2018 Experian Page 81 of 141

setMode

void setMode(RenderMode mode)

Sets the render mode of the column.

setName

void setName(String name)

Sets the name of the column.

setNullable

void setNullable(boolean nullable)

Sets whether or not the column can contain null values.

setPrecision

void setPrecision(int precision)

Sets the precision of the column.

setScale

void setScale(int scale)

Sets the scale of the column.

setShowHints

void setShowHints(boolean showHints)

Sets whether or not hints should be shown.

setTrueText

void setTrueText(String trueText)

Sets the text to display if the value is a boolean value true.

setUniqueThreshold

void setUniqueThreshold(int uniqueThreshold)

Sets the unique threshold on the column.

Scripting and REST interface Guide ©2018 Experian Page 82 of 141

setVisible

void setVisible(boolean visible)

Sets whether or not the column is visible.

setWidth

void setWidth(int width)

Sets the width of the column.

toJSON

JSONObject toJSON()

Returns a JSON representation of the column definition.

PUser

This defines a user of the product

Constructor

PUser(String username)

PUser(long id)

These constructors find the user using either their name or id.

getDisplayName

String getDisplayName()

Returns the display name of the user.

getGroupId

long getGroupId()

Returns the id of the user’s group.

getId

long getId()

Returns the id of the user.

Scripting and REST interface Guide ©2018 Experian Page 83 of 141

getName

String getName()

Returns the name of the user.

getProfileLimit

int getProfileLimit

Returns the profile limit for the user.

toJSON

JSONObject toJSON()

Returns a JSON representation of the user.

PUserAction

This provides all information necessary for an action made by a user.

getReason

String getReason()

Returns the reason for the action

getTime

PTimestamp getTime()

Returns the time the action took place.

getTimestamp

long getTimestamp()

Returns the milliseconds of the time the action took place.

getUser

PUser getUser()

Gets the user who made the action.

toJSON

Scripting and REST interface Guide ©2018 Experian Page 84 of 141

JSONObject to JSON()

Returns a JSON representation of the user action.

ProcessState

This enumeration tells you what state a job is in. Possible values are:

CREATING, INITIALISING, RUNNING, WAITING, FINISHING, TIDYING, ABORTED, FAILED, COMPLETED,

STOPPED, QUEUED, LOGGING or QUEUE_FULL.

getDescription

String getDescription()

Returns a human-readable description of the state.

sendCompletionMessage

boolean sendCompletionMessage()

Returns whether or not the process state will send a message on completion.

toJSON

JSONObject to JSON()

Returns a JSON representation of the process state.

PJob

This object is a representation of a job in the scheduler. Note that you will need to keep fetching it in order

to get updated progress and process state.

getEndTime

long getEndTime()

Returns the time the job ended.

getId

int getId()

Returns the sequence id of the job.

Scripting and REST interface Guide ©2018 Experian Page 85 of 141

getName

String getName()

Returns the name of the job.

getOwner

PUser getOwner()

Returns the user that kicked off the job.

getProgress

int getProgress()

Returns the progress of the job.

getScheduledTime

long getScheduledTime()

Returns the milliseconds for the time the job was scheduled to start.

getStartTime

long getStartTime()

Returns the milliseconds for the time the job actually started.

getState

ProcessState getState()

Returns the state of the job.

getTableId

long getTableId()

Returns the table id associated with the Job, if any

getType

JobType getType()

Returns the type of the job.

Scripting and REST interface Guide ©2018 Experian Page 86 of 141

setEndTime

void setEndTime(long endTime)

Sets the time the job finished.

setId

void setId(int id)

Sets the id of the job.

setName

void setName(String name)

Sets the name of the job.

setOwner

void setOwner(PUser owner)

Sets the owner of the job.

setProgress

void setProgress(int progress)

Sets the progress of the job.

setScheduledTime

void setScheduledTime(long scheduledTime)

Sets the time the job was scheduled to start, in milliseconds.

setStartTime

void setStartTime(long startTime)

Sets the time the job actually started, in milliseconds.

setState

void setState(ProcessState state)

Sets the state of the job.

Scripting and REST interface Guide ©2018 Experian Page 87 of 141

setTableId

void setTableId()

Sets the table id of the job.

setType

void setType(JobType type)

Sets the type of the job.

toJSON

JSONObject toJSON()

Returns a JSON representation of the job.

PLicense

This object contains information about the product license.

getCapabilities

String getCapabilities()

Returns a String representation of the capabilities of the license.

getCpus

int getCpus()

Returns the maximum number of cpus that the server is allowed to use.

getExpiryDate

String getExpiryDate()

Returns the expiry date of the license.

getLicenseKey

String getLicenseKey()

Returns the license’s key.

Scripting and REST interface Guide ©2018 Experian Page 88 of 141

getLicensedEthernetAddress

String getLicensedEthernetAddress

Returns the Ethernet address that this license is for.

getLicensedSessions

int getLicensedSessions()

Returns the number of concurrent sessions that the license will allow.

getMaximumRows

int getMaximumRows()

Returns the maximum number of rows of a table that can be loaded into the database.

getMaximumTables

int getMaximumTables()

Returns the maximum number of tables that can be loaded into the database.

getPort

int getPort()

Returns the port that this license is for.

toJSON

JSONObject toJSON()

Returns a JSON representation of the license.

PPermissions

This object contains information about the various permissions on an object.

getGroup

List<AccessRight> getGroup()

Returns the access rights on the object for users in the group which contains the user who created it.

Scripting and REST interface Guide ©2018 Experian Page 89 of 141

getUser

List<AccessRight> getUser()

Returns the access rights on the object for the user who created it.

getWorld

List<AccessRight> getWorld()

Returns the access rights on the object for any user who is not the user that created the object, or in that

user’s group.

toJSON

JSONObject toJSON()

Returns a JSON representation of the permissions.

PScriptExecutor

This object is used in the execution of a script.

getException

Exception getException()

Returns the last exception that was caused by the script.

getInfo

String getInfo()

Returns information about the executor.

getLanguageFromFile

static ScriptLanguage getLanguageFromFile(String scriptFile)

Uses the file extension of the given scriptFile to calculate the language used. Returns the calculated

language.

getMessage

String getMessage()

Returns the message.

Scripting and REST interface Guide ©2018 Experian Page 90 of 141

getResult

PSessionResult getResult()

Returns the result of the script.

getScriptResult

Object getScriptResult()

Returns the object result of the script.

PAccessControl

This object describes the access control rights that a user has on an object.

getRights

List<AccessRight> getRights()

Returns the access rights.

getUser

PUser getUser()

Returns the user.

setRights

void setRights(List<AccessRight> rights)

Sets the rights. An access right can be one of READ, READ_OBFUSCATED, MODIFY, DELETE, EXPORT, NONE,

ALL or ANNOTATE.

setUser

void setUser(PUser user)

Sets the user.

toJSON

JSONObject to JSON()

Returns a JSON representation of the access control.

Scripting and REST interface Guide ©2018 Experian Page 91 of 141

PDataSource

This object describes a datasource. These are used in the loading of data into Experian Pandora.

getDataSourceType

PDataSourceType getDataSourceType

Returns the type of the datasource.

getDisplayName

String getDisplayName()

Returns the display name of the datasource.

getId

long getId()

Returns the id of the datasource.

getName

String getName()

Returns the name of the datasource.

toJSON

JSONObject toJSON()

Returns a JSON representation of the datasource.

PDataSourceColumn

This object describes a column on a data source table. It can be changed to change how that column is

loaded.

getColumnMetadata

ColumnMetadata getColumnMetadata()

Returns the metadata of the column.

Scripting and REST interface Guide ©2018 Experian Page 92 of 141

getName

String getName()

Returns the name of the column.

setName

void setName(String name)

Sets the name of the column.

toJSON

JSONObject toJSON()

Returns a JSON representation of the column

ColumnMetadata

This object describes a column’s metadata.

canHaveNulls

boolean canHaveNulls()

Returns whether or not the column can contain null values.

getBackground

Color getBackground()

Returns the background color for the column.

getDatatype

byte getDatatype()

Returns the datatype of the column.

getDefaultMetadata

ColumnMetadata getDefaultMetadata()

Returns the default metadata of the column.

Scripting and REST interface Guide ©2018 Experian Page 93 of 141

getDefaultValueWhenNull

Object getDefaultValueWhenNull()

Returns the value to display if the value is null.

getDisplayFormat

String getDisplayFormat()

Returns the display format for the column.

getFalseText

String getFalseText()

Returns the text to display if a value is a boolean false value.

getFontDefinition

String getFontDefinition()

Returns the definition of the font for that column.

getForeground

Color getForeground()

Returns the foreground color of the column.

getFormat

byte[] getFormat()

Returns the format of the column.

getHeadingBackground

Color getHeadingBackground()

Returns the background color for the column’s heading.

getHeadingForeground

Color getHeadingForeground()

Returns the foreground color for the column’s heading.

Scripting and REST interface Guide ©2018 Experian Page 94 of 141

getKeyUniqueLevel

int getKeyUniqueLevel()

Returns the key unique level for the column

getLength

int getLength()

Returns the length of the column.

getLocale

Locale getLocale()

Returns the locale of the column.

getMaxValue

Object getMaxValue()

Returns the highest value in the column.

getMinValue

Object getMinValue()

Returns the lowest value in the column.

getNameForMetadataSql

String getNameForMetadataSql(boolean beautify)

Returns the name for that column that should be used in metadata sql.

getNumberPrecision

int getNumberPrecision()

Returns the precision of numbers in the column.

getNumberScale

int getNumberScale()

Returns the scale of numbers in the column.

Scripting and REST interface Guide ©2018 Experian Page 95 of 141

getObjectId

long getObjectId()

Returns the object id for the column.

getRawLineWeight

int getRawLineWeight()

Returns the raw line weight of the column.

getRenderMode

RenderMode getRenderMode()

Returns the render mode of the column.

getSortBehaviour

SortBehaviour getSortBehaviour()

Returns the sort behaviour of the column. This defines whether or not a sort of the column should be case

sensitive (found out by calling isCaseSensitive() on the SortBehaviour) and also whether or not the sort

should use collation (found out by calling isUsingCollation() on the SortBehaviour).

getStandardisationRule

int getStandardisationRule()

Returns the standardisation rule for the column.

getTrueText

String getTrueText()

Returns the text to display if a value is a boolean true value.

getWidth

int getWidth()

Returns the width of the column.

isDefaultAppliedToLeft

boolean isDefaultAppliedToLeft()

Scripting and REST interface Guide ©2018 Experian Page 96 of 141

Returns whether or not the default null value is applied if the column is on the left-hand side of a join.

isDefaultAppliedToRight

boolean isDefaultAppliedToRight()

Returns whether or not the default null value is applied if the column is on the right-hand side of a join.

isWidthInPixels

boolean isWidthInPixels()

Returns whether or not the result of getWidth() is in pixels.

setBackground

void setBackground(Color background)

Sets the background color of the column.

setCanHaveNulls

void setCanHaveNulls(boolean nullable)

Sets whether or not the column can contain null values.

setDatatype

void setDatatype(byte datatype)

Sets the datatype of the column.

setDefaultAppliedToLeft

void setDefaultAppliedToLeft(boolean setting)

Sets whether or not the default null value is applied if the column is on the left-hand side of a join.

setDefaultAppliedToRight

void setDefaultAppliedToRight(boolean setting)

Sets whether or not the default null value is applied if the column is on the right-hand side of a join.

setDefaultValueWhenNull

void setDefaultValueWhenNull(Object value)

Scripting and REST interface Guide ©2018 Experian Page 97 of 141

Sets the default value to use when the value is null.

setDisplayFormat

void setDisplayFormat(String displayFormat) Sets the display format for the column

setFalseText

void setFalseText(String text) Sets the text to display if a value is a boolean false value.

setFontDefinition

void setFontDefinition(String definition) Sets the font definition for the column.

setForeground

void setForeground(Color foreground) Sets the foreground color for the column.

setHeadingBackground

void setHeadingBackground(Color c) Sets the background color to use in the heading of this column.

setHeadingForeground

void setHeadingForeground(Color c) Sets the foreground color to use in the heading of this column.

setKeyUniqueLevel

void setKeyUniqueLevel(byte keythreshold) Sets the key unique level.

getLength

void setLength(int length) Sets the length of the column.

setLineWeight

void setLineWeight(LineWeight left, LineWeight top, LineWeight right, LineWeight bottom)

void setLineWeight(int lineWeight)

Sets the line weight of the column.

setLocale

void setLocale(Locale locale) Sets the locale of the column

Scripting and REST interface Guide ©2018 Experian Page 98 of 141

setRenderMode

void setRenderMode(RenderMode mode) Sets the render mode of the column.

setTrueText

void setTrueText(String text) Sets the text to display if a value is a boolean true value.

setWidth

void setWidth(int width) Sets the width of the column.

setWidthInPixels

void setWidthInPixels(boolean b) Sets whether or not the column’s width is in pixels.

PDataSourceTable

This object describes a data source table. It can be changed to change how the table is loaded.

addNewColumn

void addNewColumn() Adds a new column to the table.

deleteLastColumn

void deleteLastColumn() Deletes the last column.

getColumns

List<PDataSourceColumn> getColumns() Returns the columns.

getExternalName

String getExternalName() Returns the table’s external name.

getLocale

Locale getLocale() Returns the locale of the table.

getName

String getName() Returns the name of the table.

Scripting and REST interface Guide ©2018 Experian Page 99 of 141

setLocale

void setLocale(Locale locale) Sets the locale of the table.

setName

void setName(String name) Sets the name of the table.

toJSON

JSONObject toJSON() Returns a JSON representation of the data source table.

PLoadPermissions

This object describes the load permissions on a table.

Constructor

PLoadPermissions()

getAccessControlList

List<PAccessControl> getAccessControlList()

Returns the list of access controls that the table should have once it is loaded.

hasAccessRight

boolean hasAccessRight(PUser user, AccessRight requestedRight)

Returns whether or not the specified user will have the requestedRight on the table.

setAccessControlList

void setAccessControlList(List<PAccessControl> acl) Sets the access control list to acl.

setAccessRights

void setAccessRights(AccessLevel level, List<AccessRight> rights)

Sets the access rights for the specified access level. Access level can be one of USER, GROUP, or WORLD. An

access right can be one of READ, READ_OBFUSCATED, MODIFY, DELETE, EXPORT, NONE, ALL or ANNOTATE.

Scripting and REST interface Guide ©2018 Experian Page 100 of 141

PLoadTableDefinition

This object holds all the information necessary to load a table into Experian Pandora.

Constructor

PLoadTableDefinition()

PLoadTableDefinition(PObject schema, PObject project, Locale locale, long scheduledTime,

PLoadPermissions permissions, TableStorageType storageType, boolean ignoreEmptyTables)

schema – The schema the table should go into, can be null.

project – The project the table should go into, can be null.

locale – The locale of the table, can be null.

scheduledTime – The time the load is scheduled to start.

permissions – Permisions the table will have.

storageType – The type of storage to use for the table.

ignoreEmptyTables – Whether or not to ignore empty tables in the load.

getLocale

Locale getLocale() Returns the locale that the table will be given on load.

getPermissions

PLoadPermissions getPermissions() Returns the permissions that the table will be given on load.

getProject

PObject getProject() Returns the project that the table will be put into on load, can be null.

getScheduledTime

long getScheduledTime() Returns the milliseconds of the time that the load was scheduled.

getSchema

PObject getSchema() Returns the schema that the table will be put into on load, can be null.

Scripting and REST interface Guide ©2018 Experian Page 101 of 141

getStorageType

TableStorageType getStorageType()

Returns the storage type of the table. This can be one of: READ_ONLY, APPENDABLE, TRANSACTIONAL,

ARCHIVED_INDEXED, or ARCHIVED.

getTable

PDataSourceTable getTable() Returns the table to be loaded.

ignoreEmptyTables

boolean ignoreEmptyTables() Returns whether or not the loader should ignore empty tables.

setIgnoreEmptyTables

void setIgnoreEmptyTables(boolean ignoreEmptyTables)

Sets whether or not the loader should ignore empty tables.

setLocale

void setLocale(Locale locale) Sets the locale of the table to be loaded.

setPermissions

void setPermissions(PLoadPermissions permissions)

Sets the permissions on the table to be loaded.

setProject

void setProject(PObject project) Sets the project that the loaded table will go into.

setScheduledTime

void setScheduledTime(long scheduledTime) Sets the time the load is scheduled to start.

setSchema

void setSchema(PObject schema) Set the schema that the laoded table will go into.

setStorageType

void setStorageType(TableStorageType storageType) Sets the storage type of the table.

Scripting and REST interface Guide ©2018 Experian Page 102 of 141

setTable

void setTable(PDataSourceTable table) Sets the table to be loaded.

toJSON

JSONObject toJSON() Returns a JSON representation of the load definition.

PDocument

This object describes a document to be exported. These are used to create reports.

Constructor

PDocument()

addDocument

void addDocument(PDocument doc) Adds a document to the PDocument.

addPageBreak

void addPageBreak() Adds a page break to the document.

addSection

void addSection(PDocSection section) Adds a section to the document.

addSpacing

void addSpacing(int rows) Adds spacing to the document.

addTable

void addTable(PDocTable table) Adds a table to the document.

addText

void addText(PDocText text) Adds text to a document.

isBook

boolean isBook() Returns whether or not the document contains a series of documents and,

therefore, is a document book.

Scripting and REST interface Guide ©2018 Experian Page 103 of 141

setDescription

void setDescription(String description) Sets the description for the document.

setTitle

void setTitle(String title) Sets the title of the document.

PDocSection

This object describes a section of a document to be exported.

Constructor

PDocSection(String title, String description)

addTable

void addTable(PDocTable table) Adds a table to the section.

addText

void addText(PDocText text) Adds text to the section.

PDocTable

This object describes a table in a document to be exported.

setObjectId

void setObjectId(long id) Sets the object id on the table.

PDocText

This object describes a block of text in a document to be exported.

Constructor

PDocText(String title, Collection<String> text)

PDocText(String title, File file)

PDocText(String title, String text)

title – The title of the area of text.

Scripting and REST interface Guide ©2018 Experian Page 104 of 141

text – The text to go into the area of text.

file – The file to read the text from.

PExportDefinition

This object holds the information required for an export.

Constructor

PExportDefinition()

PExportDefinition(String serverFileName)

PExportDefinition(ExportType exportType, String serverFilename, String charsetName, boolean

forceQuotes, char quoteCharacter, ExportColumnNameStyle columnNameStyle, PivotOption

pivotOption)

exportType – The export type to use. This can be one of the following: CSV, TAB, PIPE, HTML, XLS, XLSX, PDF

or DDL.

serverFilename – The name to give the export file on the server.

charsetName – the name of the character set to use in the export.

forceQuotes – whether or not to force quotes in the export.

quoteCharacter – the quote character to use.

columnNameStyle – the style to use for column names.

This can be one of:

 DISPLAY_NAME – which uses the display name of the column

 EXTERNAL_NAME – which uses the external name of the column

 ALIAS – which uses the alias of the column

 CAMEL_CASE – which prints out the column’s display name in camel case

 TITLE_CASE – which prints out the column’s display name in title case

 HUMANIZED – which humanises the column’s display name.

 DATABASE_STYLE – which prints out the column’s display name in database style

 LOWER_CASE – which prints out the column’s display name in lower case

 UPPER_CASE – which prints out the column’s display name in upper case

 NONE – no headings are printed out

pivotOption – the option to use when deciding whether or not to pivot. This can be one of: AUTOMATIC,

YES or NO.

Note: Only HTML and PDF exports support pivoting.

Scripting and REST interface Guide ©2018 Experian Page 105 of 141

getCharsetName

String getCharsetName() Returns the name of the character set to be used in the export.

getColumnNameStyle

ExportColumnNameStyle getColumnNameStyle()

Returns the name style to be used for the columns. This can be one of: DISPLAY_NAME, EXTERNAL_NAME,

ALIAS, NAME, CAMEL_CASE, TITLE_CASE, HUMANIZED, DATABASE_STYLE, LOWER_CASE, UPPER_CASE,

NONE.

getPivotOption

PivotOption getPivotOption()

Returns the pivot option for the export. This can be one of AUTOMATIC, YES or NO.

getQuoteCharacter

char getQuoteCharacter() Returns the quote character for the export.

getServerFilename

String getServerFilename() Returns the name of the file that will be created on the server.

getType

ExportType getType()

Returns the type of the export. This can be either PDF or HTML for a document or PDF, HTML, CSV, TAB,

PIPE, XLS, XLSX, JDBC or DDL for a table.

isForceQuotes

boolean isForceQuotes() Returns whether or not quotes will be forced in the export.

setCharsetName

void setCharsetName(String charsetName)

Sets the name of the character set to be used in the export.

Scripting and REST interface Guide ©2018 Experian Page 106 of 141

setColumnNameStyle

void setColumnNameStyle(ExportColumnNameStyle columnNameStyle)

Sets the name style to be used for the columns. This can be one of: DISPLAY_NAME, EXTERNAL_NAME,

ALIAS, NAME, CAMEL_CASE, TITLE_CASE, HUMANIZED, DATABASE_STYLE, LOWER_CASE, UPPER_CASE,

NONE.

setForceQuotes

void setForceQuotes(boolean forceQuotes) Sets whether or not quotes will be forced in the export.

setPivotOption

void setPivotOption(PivotOption pivotOption)

Sets the pivot option for the export. This can be one of AUTOMATIC, YES or NO.

setQuoteCharacter

void setQuoteCharacter(char quoteCharacter) Sets the quote character for the export.

setServerFilename

void setServerFilename(String serverFilename)

Sets the name of the file that will be created on the server.

setType

void setType(ExportType type) Sets the type of the export. This can be either PDF or HTML.

PFunctionVersionInfo

This object contains information about a specific version of a function.

getAction

PUserAction getAction() Returns the user action for the version’s creation.

getExpression

String getExpression() Returns the function expression for the version.

setAction

void setAction(PUserAction action) Sets the user action for the version’s creation.

Scripting and REST interface Guide ©2018 Experian Page 107 of 141

setExpression

void setExpression(String expression) Sets the expression for the version

toJSON

JSONObject toJSON() Returns a JSON representation of the version.

PGroup

This object defines a user group

Constructor

PGroup(String groupName)

PGroup(long id)

These constructors find the group using either its name or id.

getDisplayName

String getDisplayName() Returns the display name of the group

getId

long getId() Returns the id of the group.

getName

String getName() Returns the name of the group.

getUsers

Collection<PUser> getUsers() Returns a collection of the users that are part of the group.

toJSON

JSONObject toJSON() Returns a JSON representation of the group.

Scripting and REST interface Guide ©2018 Experian Page 108 of 141

PProperties

This object defines a list of properties

Constructor

PProperties(String name)

add

void add(PProperty prop, Object value) Adds a property to the properties list.

containsKey

boolean containsKey(PProperty key)

Returns whether or not the list of properties contains the given key.

containsValue

boolean containsValue(Object value)

Returns whether or not the list of properties contains the given value.

getName

String getName() Returns the name pf the property list.

getValue

Object getValue(PProperty property) Returns the value associated with the given property.

isEmpty

boolean isEmpty() Returns whether or not the property list is empty.

iterator

Iterator<PProperty> iterator() Returns an iterator for the properties.

keySet

Set<PProperty> keySet() Returns a set of the properties in this property list.

Scripting and REST interface Guide ©2018 Experian Page 109 of 141

setName

void setName(String name) Sets the name of the group of properties.

size

int size() Returns the size of the list of properties.

toJSON

JSONObject toJSON() Returns a JSON representation of the list of properties.

values

Collection<Object> values() Returns a collection of the values of all the properties in the property list.

PPropertiesGroup

This object defines a group of properties.

Constructor

PPropertiesGroup(String name)

add

boolean add(PProperties) Adds a list of properties to the property group.

clear

void clear() clears the properties group

get

PProperties get(int index) Returns the list of properties at the specified index.

getName

String getName() Returns the name of the property group.

isEmpty

boolean isEmpty() Returns whether or not the list of properties is empty.

Scripting and REST interface Guide ©2018 Experian Page 110 of 141

iterator

Iterator<PProperties> iterator() Returns the iterator for the group.

listIterator

ListIterator<PProperties> listIterator() Returns the list iterator for the group.

setName

void setName(String name) Sets the name of the property group.

size

int size() Returns the size of the property group

subList

List<PProperties> subList(int fromIndex, int toIndex)

Returns a sublist of the properties in the group that are between fromIndex and toIndex.

toJSON

JSONObject toJSON() Returns a JSON representation of the property group.

PProperty

This enumeration defines the properties that are used in PObjects.

Possible Properties are:

Property Type Description Used In
AUTHOR User The author of the object Note_Detail

TEXT String The text in the object Note_Detail

HTML_TEXT String An HTML representation of the text in
the object

Note_Detail

NAME String The name of the object All Objects

DISPLAY_NAME String The display name of the object All Objects

DESCRIPTION String The description of the object All Objects

STEWARD User The user who stewards the object All Objects

STEWARD_GROUP Object The group of the user who stewards
the object.

All Objects

LAST_MODIFIED User Action Information about when the object
was last modified

All Objects

CREATED User Action Information about when the object
was created

All Objects

OBJECT_TYPE Object Type The type of the object All Objects

Scripting and REST interface Guide ©2018 Experian Page 111 of 141

ID String The id of the object All Objects

PARENT Object The parent of the object All Objects

NOTE_COUNT Integer The number of notes on the object All Objects

PERMISSIONS Permissions The permissions on the object All Objects

COLUMN_COUNT Integer The number of columns in the object Table, View_Table

VALIDATION_STATUS String The validation status of the object Table

DATASOURCE String The datasource the table came from Table

DEPENDENCY_COUNT Integer The number of dependencies on the
table

Table

KEY_COUNT Integer The number of keys on the table Table

ROW_COUNT Integer The number of rows in the object Table, View_Table

KEY_THRESHOLD Integer Limit the maximum number of keys
that the process will find

Table

KEY_LEVEL Integer The Maximum key level Table

DEPENDENCY_THRESHOLD Integer Limit the maximum number of
dependencies that the process will
discover.

Table

DEPENDENCY_LEVEL Integer The maximum dependency level Table

LAST_KEY_TIME Timestamp A timestamp for the last time a key
was found on the table

Table

LAST_DEPENDENCY_TIME Timestamp A timestamp for the last time a
dependency was found on the table

Table

LAST_KEY_USER User The last user to find a key on the table Table

LAST_DEPENDENCY_USER User The last user to find a dependency on
the table

Table

LAST_VALIDATION_TIME Timestamp A timestamp for the last validation
time.

Table, Column

LAST_VALIDATION_USER User The user who last started a validation
on the object.

Table, Column

LOAD_DURATION Integer The time it took a table to load Table

LOW_VALIDATION_THRESHOLD Integer The threshold between an ok result
and a failed result in validation

Table

HIGH_VALIDATION_THRESHOLD Integer The threshold between a pass result
and an ok result in a validation

Table

SCORE Decimal The value that the object scored in
validation

Table, Column

VOLUME_SCORE Decimal The volume score on a column Column

SUBJECT_AREA Object The Schema for the table Table

VERSION Integer The version of the object Note_Detail, Table

CHILD_COUNT Integer The number of children the object has All Objects

ABBREVIATIONS String A comma-separated list of
abbreviations for the business term

Business_Term

DEFINITION String The definition of the business term Business_Term

EXAMPLE String An example of the business term Business_Term

SENTENCE String An example of the business term
being used in a sentence

Business_Term

BROADER_TERM String A broader term for the business term Business_Term

USAGE String The usage of the business term Business_Term

SOURCE String The source of the object Business_Term,
Table_Version_Gro
up

Scripting and REST interface Guide ©2018 Experian Page 112 of 141

STATUS String The status of the object Business_Term,
Relationship, User

LAST_STATUS_CHANGE User Action Information about the last status
change on the business term.

Business_Term

SYNONYMS Object List Returns a list of business terms that
are synonymous with the business
term

Business_Term

RELATED_TERMS Object List Returns a list of business terms that
are related to the business term

Business_Term

RELATED_COLUMNS Object List Returns a list of columns that are
related to the business term

Business_Term

TYPE String The type of the object Domain,
Saved_Query,
Function

SKIP_FIRST_ROW Boolean Whether or not to skip the first row
when loading a domain

Domain

IS_SENSITIVE Boolean Whether or not the domain contains
sensitive information

Domain

FILENAME String The name of the file that contains the
domain date

Domain

VALUE String The value of a user property or named
constant

All Objects

ROLE Object The User’s Role User

EMAIL String The email address of the user User

PHONE1 String The primary phone number of the
user

User

PHONE2 String The secondary phone number of the
user

User

LAST_LOGGED_IN_TIME Timestamp A timestamp for when the user last
logged in

User

LAST_LOGGED_IN String A textual representation of the
timestamp for when the user last
logged in

User

CURRENT_PROJECT Object The User’s current project User

IS_DISABLED Boolean Whether or not the user is disabled in
Experian Pandora

User

IS_ADMIN Boolean Whether or not the user is the system
administrator

User

BUSINESS_IMPACT Object The business impact on a note Note

TECHNICAL_IMPACT Object The technical impact on a note Note

NOTED_OBJECT Object The object the note is for Note

ASSIGNED_TO User The user the note is assigned to Note

ASSIGNED_BY User The user who assigned the note Note

ASSIGNED_WHEN Timestamp A timestamp for when the note was
assigned

Note

NOTE_ID Integer The sequence id of the note Note

INDEX Integer The index of the note detail Note_Detail

QUERY String The query on the object Note_Detail,
Saved_Query,
View_Table

QUERY_DESCRIPTION String The description of the query on a note
detail

Note_Detail

LHS_COLUMNS Object List The left-hand columns in a key Key

Scripting and REST interface Guide ©2018 Experian Page 113 of 141

RHS_COLUMN Object The right-hand column in a key or
dependency

Key, Dependency

COVERAGE Integer The amount of a column that follows
the dependency

Dependency

BOTH_NULL_COUNT Integer The number of rows where both the
left-hand column and right-hand
column are null

Dependency

SINGLETON_NULL_COUNT Integer The number of rows where either the
left-hand column or the right-hand
column, but not both, contain a null
value

Dependency

NULL_COUNT Integer The number of null values in the key Key

QUALITY Integer The quality of the key Key

ERROR_COUNT Integer The number of errors in the key Key

IS_APPROXIMATE Boolean Whether or not the key is
approximate

Key

IS_SAMPLED Boolean Whether or not the key is sampled Key

TESTED_QUALITY Integer The quality of the key when tested Key

VERSIONS Object List The versions of the object Function,
Table_Version_Gro
up

RELOAD_METHOD String The reload method to use for the
table version group

Table_Version_Gro
up

RELOAD_PERIOD String The period after which to check
whether the table needs reloading

Table_Version_Gro
up

VERSIONS_TO_KEEP Integer The number of versions to keep
before starting to archive them

Table_Version_Gro
up

VERSIONS_TO_ARCHIVE Integer The number of versions to archive
before starting to delete them

Table_Version_Gro
up

WORKING_DAYS_ONLY Boolean Whether or not to only reload in
working days

Table_Version_Gro
up

LAST_RELOADED Timestamp A timestamp for when the table was
last reloaded

Table_Version_Gro
up

AUTO_REVALIDATE Boolean Whether or not a new version of the
table should be automatically
validated

Table_Version_Gro
up

DATATYPE String The datatype of the object Table, Function

COUNT Integer The number of arguments the
function has

Function

CARDINALITY String The cardinality of the relationship Relationship

DOCUMENTED_CARDINALITY String The documented cardinality of the
relationship

Relationship

CARDINALITY_TYPE String The type of cardinality the
relationship has

Relationship

LHS_DOMAIN_QUALITY Decimal The quality of the domain on the left-
hand side of the relationship

Relationship

RHS_DOMAIN_QUALITY Decimal The quality of the domain on the
right-hand side of the relationship

Relationship

DOMAIN_QUALITY Decimal The quality of the domain of the
relationship has a whole

Relationship

LHS_JOIN_QUALITY Decimal The quality of the join on the left-
hand side of the relationship

Relationship

Scripting and REST interface Guide ©2018 Experian Page 114 of 141

RHS_JOIN_QUALITY Decimal The quality of the join on the right-
hand side of the relationship

Relationship

JOIN_QUALITY Decimal The quality of the join on the
relationship as a whole

Relationship

LHS_UNMATCHED_VALUES Integer The number of unmatched values in
the left-hand column

Relationship

RHS_UNMATCHED_VALUES Integer The number of unmatched values in
the right-hand column

Relationship

LHS_UNMATCHED_ROWS Integer The number of unmatched rows in the
left-hand column

Relationship

RHS_UNMATCHED_ROWS Integer The number of unmatched rows in the
right-hand column

Relationship

DUPLICATE_MATCHED_VALUES Integer The number of duplicate matched
values in the relationship

Relationship

DUPLICATE_MATCHED_ROWS Integer The number of duplicate matched
rows in the relationship

Relationship

COMMON_VALUES Integer The number of common values in the
relationship

Relationship

VALUES_NOT_IN_COMMON Integer The number of values not in common
in the relationship

Relationship

COMMON_ROWS Integer The number of common rows in the
relationship

Relationship

TOTAL_VALUES Integer The total number of values in the
relationship

Relationship

TOTAL_ROWS Integer The total number of rows in the
relationship

Relationship

LHS_NULL_COUNT Integer The number of nulls in the left-hand
side of the relationship

Relationship

RHS_NULL_COUNT Integer The number of nulls in the right-hand
side of the relationship

Relationship

LHS_MATCHED_ROWS Integer The number of matched rows on the
left-hand side of the relationship

Relationship

RHS_MATCHED_ROWS Integer The number of matched rows on the
right-hand side of the relationship

Relationship

TOTAL_DUPLICATE_VALUES Integer The total number of duplicate values
in the relationship

Relationship

TOTAL_DUPLICATE_ROWS Integer The total number of duplicate rows in
the relationship

Relationship

LHS_TABLE Object The table on the left-hand side of the
relationship

Relationship

RHS_TABLE Object The table on the right-hand side of the
relationship

Relationship

USER_PROPERTY Property A user property on the object All Objects

USER_PROPERTIES Properties A list of user properties on the object All Objects

VERSIONED Boolean Whether or not the function is
versioned

Function

EXPRESSION_ARGUMENTS Object List The arguments in the function Function

IS_VARIABLE Boolean Whether or not the function is
variable

Function

STATISTICS Object List The statistics for the table or column Table, Column

Scripting and REST interface Guide ©2018 Experian Page 115 of 141

getByName

static PProperty getByName(String value)

Returns the PProperty whose name matches the given value.

getKey

String getKey() Returns the property’s key.

getPropertyType

PPropertyType getPropertyType() Returns the type of the property.

PTimestamp

This object defines a timestamp for when something happened, such as a table load.

getDate

Data getDate() Returns the Date object for this timestamp.

getTimestamp

long getTimestamp() Returns the timestamp in milliseconds.

toJSON

JSONObject toJSON() Returns a JSON representation of the timestamp.

PProductInfo

This object defines information about the product.

getBuildDate

String getBuildDate() Returns a String representation of the date when the product was built.

getCommonVersion

String getCommonVersion() Returns the version of the PCommon jar.

getCopyright

String getCopyright() Returns the copyright information for the product.

Scripting and REST interface Guide ©2018 Experian Page 116 of 141

getDescription

String getDescription() Returns a description of the product.

getName

String getName() Returns the name of the product.

getServerVersion

String getServerVersion() Returns the version of the PServer jar.

getSupportEmail

String getSupportEmail() Returns the email address that any support queries should be sent to.

getTitle

String getTitle() Returns the title of the product.

toJSON

JSONObject toJSON() Returns a JSON representation of the product information.

RESTful API

The REST API is a web server embedded in the database server. It is predominantly to provide REST api

access to data and metadata resources, but can also serve interactive pages (for example, sharing a quality

report for a Table with another person who is not a user of the application).

The majority of resources require authentication.

Call Pattern

Resources can either be used atomically, passing credentials with each call, which is more in keeping with

the REST ideology, or can be part of an overall session with a traditional login/logout. Note that a client

concurrent license is consumed for the duration of the result only if the request is atomic, or for the entire

duration of the session if the login/action…/logout pattern is used.

Authentication

All requests have the option of username and password parameters being supplied in the URI, or an auth

key. The auth key is tied to a live session, created by using the login resource and is valid provided the

session continues and the calls are from the same client IP address.

Scripting and REST interface Guide ©2018 Experian Page 117 of 141

Although the REST engine allows connections with plain passwords, we do not recommend this is used other

than in test environments. The login resource will return the encrypted password as well as the auth key, so

future atomic requests can be performed using the encrypted password.

Should a resource request be interactive (pdf or html) and no credentials be supplied, the web server will

invoke an html login screen and (optionally) store the credentials in an encrypted manner in a client-side

cookie. Auth keys are not used for interactive sessions, instead the cookie is the favoured option.

General Conventions

Result tags for XML and JSON requests should all be viewed as optional. Boolean parameters are in general

only presented when true (set). Their absence indicates they are false. This is a deliberate design decision in

an attempt to minimise the size of XML and JSON result sets.

General REST URI Parameters

Many of the API requests respond to URI query parameters.

Parameter types

Type Allowed values
Boolean true, false, 1, 0, yes, no, y or n, case is insensitive

String Any value

Integer An integer number

Double A decimal number

ObjectType A enumeration of repository object types

QueryType An enumeration of query types

IconType An enumeration of the types of icon for the icons resource

SortOrder A sorting order. Allowed values are:
Ascending (asc)
Descending (desc)
Unsorted (none)

ImageState The state of an image render. Allowed values are:
DISABLED – Greyed out and dimmer
ROLLOVER – Brighter for when mouse is rolled over the image
NORMAL – Normally rendered image

StringList A list of strings, comma separated

IntegerList A list of integers, comma separated

PropertyList A list of object properties

SqlQuery A formal SQL query string

Path A relative REST resource path

ExplorerType An enumeration of the type of nodes for the explorer resource

Color An HTML color string

AllowedValueList A description of an allowed value, used for functions, which is a value with a
descriptive name and a description.

Scripting and REST interface Guide ©2018 Experian Page 118 of 141

Parameters used in all URIs

Parameter Type Usage
username String The username to use to log in to the server

password String The password to use to log in to the server

auth_key String The authorisation key given on login (used instead of username and
password)

RESTful GET Resources

/manual

The /manual resource retrieves the application user manual in pdf format. This does not require

authentication.

/api

The /api resource retrieves this manual in pdf format. This does not require authentication.

/explorer/node/subNode/…

This resource provides access to the items seen in the Experian Pandora Explorer interface, each of

which is an explorer node. This is a tree of nodes, and hence a tree of REST resources, the base of which

is the explorer resource which gives you the root of the node. These resources require authentication.

The starting point is /explorer .

Supported Formats

 json, xml, text, txt

Supported Parameters

Parameter Type Usage
Expand Boolean Expand the results to include the children of the required node if there are any.

Default is false.

Names StringList The list of names of child nodes to return, can be regular expressions. Default is
to return all children. Setting this parameter implicitly sets expand to true.

Scripting and REST interface Guide ©2018 Experian Page 119 of 141

Result Tags

Tag Type Description
can_drilldown Boolean Whether or not it is possible to drilldown on the node. This is to

allow an application to display the node as enabled or not for
drilldown.

Count Integer The number of children returned when expanded either using
expand or names

description String A human readable description of the node.

display_name String The name of the node for display purposes.

drag_query SqlQuery The SQL query to run when the node is dragged onto the Experian
Pandora desktop. This may differ to the query tag which is the SQL
query that is executed when you drilldown on the node.

explanation String The text explanation for the query invoked from the node

foreground_color Color The foreground color

has_children Boolean Whether the node has children or not.

icon_type IconType The type of icon for the node. The image for this can be accessed
using the icons resource.

Id Integer The id of the repository object represented by this node.

identifier Integer The unique identifier for the node. This is guaranteed to be unique
across the entire hierarchy of nodes and can be used as a key to
recall remembered nodes by the calling application.

Index Integer The index of the node, starting at zero. This is simply the position of
the node at its current level in the hierarchy.

Name String The name of the node which may differ to the human readable
display_name tag.

note_count Integer Number of notes attached to the repository object represented by
this node.

obfuscated Boolean Denotes if the node is obfuscated (scrambled)

object_type ObjectType The type of repository object represented by the node.

parent_id Integer The id of the repository object represented by the parent node for
this node.

Path String The relative url path to this node in the REST api

Query SqlQuery The SQL Query that results when drilling down to the node.

Type ExplorerNodeType The type of node.

Scripting and REST interface Guide ©2018 Experian Page 120 of 141

/type/enumeration

This resource provides information on the enumerated types used in REST interactions. These

resources require authentication.

Supported Formats

 json, xml, text, txt

Valid Enumerations

Name Description

explorer An enumeration of the explorer node types

expression_argument An enumeration of types of arguments for functions

Icon Types of icon

Job An enumeration of job types for the scheduler

job_priority An enumeration of job priorities for the scheduler

job_state An enumeration of job states for the scheduler

Object A repository type

Query A query type name

Report A type of report

Supported Parameters

Parameter Type Usage
name String The regular expression pattern to use when retrieving types in

order to determine which results to return by filtering on type
name

count Integer The maximum number of results to return

Result Tags (Object)

Tag Type Description
count Integer The number of objects of that object type in the

repository

description String The description of the object type

name String The name of the object type

timestamp Object The timestamp an object of that type was last
created or modified

type String The type of object

Scripting and REST interface Guide ©2018 Experian Page 121 of 141

Result Tags (Query)

Tag Type Description
name String The name of the query type

display_name String The display name for the query type

Result Tags (Icon)

Tag Type Description
icon_type String The name of the icon type

Result Tags (Explorer)

Tag Type Description
always_has_folders Boolean This node type always has folders only below

always_leaf Boolean This node type is always a leaf

display_name String The display name for the explorer node type

name String The name of the explorer node type

Result Tags (Expression Argument)

Tag Type Description
display_name String The display name for the expression argument type

name String The name of the expression argument type

Result Tags (Global Query)

Tag Type Description
display_name String The display name for the global query

name String The name of the global query

query String The SQL query string for the global query

Result Tags (Job State)

Tag Type Description
description String The description of the job state

name String The name of the job state

send_completion Boolean True if the job should send a completion message on
completion

Result Tags (Job Type)

Tag Type Description
class String The scheduler class for the job type

display_name String The display name for the job type

group String The name of the job group, itself a job type

Scripting and REST interface Guide ©2018 Experian Page 122 of 141

Tag Type Description
name String The name of the job type

Result Tags (Job Priority)

Tag Type Description
name String The name of the job type

Result Tags (Report Type)

Tag Type Description
name String The name of the report type

description String The description for the report type

display_name String The display name for the report type

/function

This resource provides information about all of the functions, including custom functions.

Supported Formats

 json, xml, txt, text, html, pdf

Supported Parameters

Parameter Type Usage
name String The regular expression pattern to use when retrieving

function information in order to determine which
function(s) to display, by function name

library String The regular expression pattern to use when retrieving
function information in order to determine which
function(s) to display, by library

Result Tags

Tag Type Description
count Integer The number of arguments the function expects. This is not set if the

function is variable.

datatype String The datatype for the return value from the function, or AUTO if not
strictly typed

description String The description for the function

display_name String The display name for the function

expression_arguments ObjectList A list of argument objects for the function

id String The id for the function

is_variable Boolean Whether the function has a variable number of arguments

library Object Name and description of the parent function library

Scripting and REST interface Guide ©2018 Experian Page 123 of 141

Tag Type Description
name String The function name

parent String The parent library name for the function

type String INTERNAL for internal functions or CUSTOM for glossary user-
defined ones

versioned Boolean Whether the function has versions

The expression_arguments could have the following result tags:

Tag Type Description
allowed_values AllowedValueList An object describing the value, name and description for allowed

values

auto_populate Boolean Whether the argument should be auto-populated

datatypes StringList The possible datatypes for the argument

description String The description of the argument

is_column_reference Boolean Whether the argument is a reference to a column

is_lookup_table Boolean Whether the argument is a lookup table

is_property_key Boolean Whether it is a property key

is_reference Boolean Whether the argument is a reference

is_validation_arg Boolean Whether it is a validation argument

name String The name of the argument

nullable Boolean Whether the argument is allowed to be null

type ArgumentType The type of the argument

verbatim Boolean Whether the argument should be treated verbatim and not auto-
casted

/function/execution/function_name

This resource provides access to execution of custom functions in the glossary from external

applications. The name of the function is unique in the glossary so can be referenced without a

qualifying function library name.

The parameters are named the same as the parameter names for the function itself, in lower case with

underscores instead of spaces. The values of the parameters are taken verbatim and are typeless. For

alpha numeric values you should encapsulate them with single quotes. To include a single quote within

the value, you should put two single quotes (i.e. escape the quote with another quote). This is standard

SQL syntax.

Either transformation or validation functions can be invoked with this mechanism.

Supported Formats

 json, xml, text, txt

Scripting and REST interface Guide ©2018 Experian Page 124 of 141

Result Tags

Tag Type Description
background_color Color The HTML colour for the background

datatype String The datatype of the value

foreground_color Color The HTML colour for the foreground

html_value String The value in html if it is subject to formatting

icon_type IconType The type of icon for the value if there is one

is_blank Boolean The value returned is empty (blank)

is_error Boolean Denotes the result value is an error

is_null Boolean The value returned is NULL

is_warning Boolean Denotes the result value is a warning

length Integer The length of the value

message String The warning or error message return if it is a warning or error

obfuscated boolean True if the value is obfuscated (scrambled)

render_mode RenderMode The rendering mode for the value for presentation purposes. Only
set if different to the default, which is normal text in colour.

value String The value in string form

/icon/icon_type

This resource provides the images for all of the available icon types. It does not require authentication.

Default is 16x16, normal image state and png format. A full list of icon types can be obtained from the

/type/icon resource.

Supported Formats

 bmp, png, jpg, gif

Note: png is the only format that supports transparency

Supported Parameters

Parameter Type Usage
size Integer The size of the image from 8 to 256 pixels square

render ImageState The state of the image to be rendered. Default is NORMAL

The possible values for render are: NORMAL, ROLLOVER and DISABLED.

/global

This resource is a synonym for /type/global_query

Scripting and REST interface Guide ©2018 Experian Page 125 of 141

/global/global_query_type

This resource provides access to global query definitions that report on aspects of the server that are

independent of a specific context (e.g. All Tables, All Columns etc.). A full list of global_query_type

definitions can be obtained from the /type/global_query resource.

Supported Formats

 json, xml, txt, text, html, pdf

Result Tags

Tag Type Description
display_name String The display name for the global query type

name String The name of the global query type

query String The SQL query string for the global query

/images/

This resource is provided for the generation of dynamic images produced in, for example, mapping reports

which are not fixed objects in the REST schema, but are on-demand generated. The images themselves are

created in the REST_IMAGE directory of the server and given a name relative to the user’s session. There is

currently no intelligent caching of images. It is not really possible to use this resource directly, more that it

will be used indirectly during dynamic generation of html.

Supported Formats

 bmp, png, jpg, gif

Scripting and REST interface Guide ©2018 Experian Page 126 of 141

/login

This resource allows a user to log in to the REST API. If the specified format is interactive (html or pdf) the

user will be presented with an HTML login if no credentials are provided on the command line. The response

from this resource is currently information about the user logged in.

Supported Formats

 json, xml, txt, text, html, pdf

Result Tags

Tag Type Description
display_name String The display name of the User

id Integer The internal id of the User

identifier String The identifier for the User’s REST Session (to be used as the Auth Key)

name String The name of the User

password String The encrypted password for the user

/logout

This resource allows a user to log out of the REST API

Supported Formats

 json, xml, txt, text, html, pdf

Result Tags

Tag Type Description
Message String A Goodbye message to the user

Scripting and REST interface Guide ©2018 Experian Page 127 of 141

/object/object_type

This resource allows provides access to the majority of repository objects. The resource can be called

without an object_type to return the entire repository in a single call. For a list of object types use the

/type/object resource.

Supported Formats

 json, xml, txt, text, html, pdf

Supported Parameters

Parameter Type Usage
child_match Boolean Only return child objects that had properties that matched the

Child_Property query parameter (if used)

child_property String Specifies the list of properties to return for children if
returning children

children String Specifies the list of object types of children that should be
returned. Default is not to return children.

default_query Boolean The default SQL query string

id Integer Returns objects of the requested type with a repository id
matching one of the ids in the list.

match StringList Only return objects that had properties that matched the
Property query parameter (if used)

name String Returns only objects of the requested type whose
display_name attribute matches this supplied regular
expression. Default is to match all.

order SortOrder Controls the sort order of returned objects using their name
for the sort.

property String Returns only the specified object properties. This can be a list
of specific properties and/or regular expression patterns.

user_property String Specifies a list of repository object properties to return. *
denotes all as does the lack of this parameter.

user_property_match Boolean Only return objects that had properties that matched the
User_Property query parameter (if used)

object_types ObjectTypeList List of types to return when returning all objects

Result Tags (All Objects)

Tag Type Description
child_count Integer The number of children the object has

created User Action Information about the creation of the object. Including the
name and id of the user who created it, the reason why they
created it and the timestamp to show when it was created.

description String The object’s description

display_name String The display name of the object

id Integer The id of the object

Scripting and REST interface Guide ©2018 Experian Page 128 of 141

Tag Type Description
last_modified User Action Information about the last time this object was modified.

Including the name and id of the user that modified it, the
reason why they modified it and the timestamp to show when
it was modified.

name String The name of the object

note_count Integer Number of notes attached to the object

parent Integer The id of the object’s parent

permissions Permissions The access rights for the object

steward String The user that stewards this object

steward_group String The group who steward this object

user_property Property A user defined property on the object

Result Tags (Business Constants)

Tag Type Description
value String The value of the business constant

Result Tags (Business Terms)

Tag Type Description
abbreviations StringList A list of abbreviations for the business term

broader_term String General class to which the term belongs

definition String The definition of the business term

example String An example of the use of the business term

last_status_change User Action The last status change

related _terms Business Term Terms that are related to the business term

related_columns Column List Columns that are related to the business term

sentence String A sample sentence that contains the term

source String Where the business term comes from

status String The status of the business term

synonyms StringList Synonyms for the business term

usage String Description of how the item defined by the business term is
used

Scripting and REST interface Guide ©2018 Experian Page 129 of 141

Result Tags (Columns)

Tag Type Description
atypical_datatypes StringList Any present datatypes that are not the

documented datatype

auto_parse_dates Boolean Whether date values in this column should be
automatically parsed

auto_parse_money Boolean whether money values in this column should be
automatically parsed

auto_remove_erroneous_quotes Boolean Whether erroneous quotes should be
automatically removed

average Object The average of the values in the column

average_format_frequency Double The average of the frequencies of all formats on
the column

average_frequency Double The average frequency of values on the column

average_length Integer The average of the lengths of all the values in
the column

blank_count Integer The number of blank values

blanks_treated_as_null Boolean Whether blank values are treated as nulls

broken_key Boolean Whether or not the column is a broken key

checksum Integer The checksum for the column

completeness Double The completeness of the column

count Integer The number of values in the column

datatype String The predominant datatype in this column

decimals_are_standardised Boolean Whether decimals are standardised

display_steward String The display name of the steward

display_steward_group String The display name of the steward group

distribution Double The distribution of values in the column

documented_format String The documented format

documented_length Integer The documented length

documented_max Object The documented maximum value

documented_min Object The documented minimum value

documented_precision Integer The documented precision

documented_scale Integer The documented scale

documented_type String The documented datatype

external_name String The external name of the column

false_text String The text to show for a false value

format_frequency_deviation Double The standard deviation of format frequencies

frequency_deviation Double The standard deviation of value frequencies

high_format_frequency Boolean Whether the column has an abnormally high
format frequency

high_frequency Boolean Whether the column has an abnormally high
value frequency

high_number Boolean Whether the column has an abnormally high
number

high_validation_threshold Integer The threshold between an ok result and a
passed result in validation

index Integer This column’s index

integers_are_standardised Boolean Whether integers are standardised

is_atypical Boolean Whether or not the column has more values of
a different datatype than expected

Scripting and REST interface Guide ©2018 Experian Page 130 of 141

Tag Type Description
last_validation_time Timestamp A timestamp for the last time the column was

validated

last_validation_user String Information about the user who last validated
this column

leading_spaces_removed Boolean Whether leading spaces should be removed

leading_zero_as_number Boolean Whether leading zeros should be counted as a
number

least_common Object The least common value in the column

least_common_count Integer The number of times the least common value
occurs

length_deviation Double The standard deviation of value lengths of the
values in the column

length_sum Integer The sum of the lengths of the values in the
column

length_sum_squared Integer The sum of the lengths of the values in the
column, squared

long_values Boolean Whether the column has long values

longest_length Integer The length of the longest value in the column

low_format_frequency Boolean Whether the column has an abnormally low
format frequency

low_frequency Boolean Whether the column has an abnormally low
value frequency

low_nulls Boolean Whether the column has a low distribution of
null values

low_number Boolean Whether the column contains an abnormally
low number

low_validation_threshold Integer The threshold between a failed result and an ok
result in validation

max Object The maximum value in the column

max_count Integer The number of times the maximum value occurs

max_expected_format_frequency Double The largest number of duplicate formats
expected

max_expected_frequency Double The largest number of duplicate values
expected

max_expected_length Integer The longest a value is expected to be

max_expected_number Double The maximum expected numeric value

min Object The minimum value in the column

min_count Integer The number of times the minimum value occurs

min_expected_format_frequency Double The smallest number of duplicate formats
expected

min_expected_frequency Double The smallest number of duplicate values
expected

min_expected_length Integer The shortest a value is expected to be

min_expected_number Double The minimum expected numeric value

most_common Object The most common value in the column

most_common_count Integer The number of times the most common value
occurs

most_common_format String The most common format in the column

most_common_format_count Integer The number of times the most common format
in the column occurs

native_type String The native type of this column

Scripting and REST interface Guide ©2018 Experian Page 131 of 141

Tag Type Description
negative_count Integer The number of negative values

note_count Integer The number of notes attached to this column

null_count Integer The number of nulls in this column

null_distribution Double The distribution of null values

precision Integer The precision of the column

prevalent_type String The prevalent type of the column

relationship_count Integer The number of relationships that involve this
column

row_count Integer The number of rows in this column

scale Integer The scale of the column

scientific_numbers_are_standardised Boolean Whether scientific numbers are standardised

score Double The validation score for this column

sequence String The sequence of the column

short_values Boolean Whether the column has abnormally short
values

shortest_length Integer The length of the shortest value in the column

standard _deviation Double The standard deviation of values in the column

standard_deviation_multiplier Double The standard deviation multiplier on the column

sum Object The sum of the values in the column

sum_squared Double The square of the sum of the values in the
column

sum_squared_of_format_frequency Double The sum of the frequencies of the formats in
the column, squared

sum_squared_of_frequency Double The sum of the frequencies of the values in the
column, squared

table_id Integer The id of this column’s table

table_name String The name of this column’s table

trailing _spaces_removed Boolean Whether trailing spaces should be removed

true_text String The text to show for a true value

uncommon_divisor Integer The uncommon divisor of the column

unique_formats Integer The number of unique formats in the column

unique_key_threshold Integer The unique key threshold of the column

unique_values Integer The number of unique values in the column

values_were_tokenised Boolean Whether or not the values were tokenised

volume_score Double The volume score for this column

zero_count Integer The number of zero values

Result Tags (Dependencies)

Tag Type Description
both_null_count Integer The number of times both sides of the

dependency are null

coverage Integer The coverage of the dependency

rhs_column Integer The right-hand column in the dependency

singleton_null_count Integer The number of times one side or the other, but
not both, contains a null.

Scripting and REST interface Guide ©2018 Experian Page 132 of 141

Result Tags (Domains)

Tag Type Description
filename String The name of the file that contains the domain information

is_sensitive Boolean Whether the content of the domain is sensitive

skip_first_row Boolean Whether the first row should be skipped (As it is titles)

type String The type of domain

Result Tags (Functions)

Tag Type Description
expression_arguments Object Kist A list of expression arguments objects

count Integer The number of arguments passed

datatype String The datatypes that are compatable with this function

description String The description name of the function

display_name String The display name of the function

id Integer The id of the function

is_variable Boolean Whether this function has a variable number of arguments

name String The name of the function

parent Object The parent function

type String The type of function

versions Object List A list of the versions of this function

versioned Boolean Whether the function is versioned

Result Tags (Keys)

Tag Type Description
error_count Integer Number of errors

is_approximate Boolean The key is approximate

is_sampled Boolean Keys have been calculated using a sampled dataset

lhs_columns Object List A list of the columns that form the key

null_count Integer Number of nulls

quality Integer The quality of the calculated key in percent

tested_quality Integer The tested quality of the key.

Result Tags (Notes)

Tag Type Description
assigned_by Integer Who the note was assigned by

assigned_to Integer Who the note has been assigned to

assigned_when Integer When the note was assigned

business_impact Integer The business impact of the note

note_id Integer The id of the note

noted_object Integer The id of the object that the note is on

technical_impact Integer The technical impact of the not

Scripting and REST interface Guide ©2018 Experian Page 133 of 141

Result Tags (Note Details)

Tag Type Description
author User The user who created the note detail

created User Action The action that describes the creation of the
note detail

html_text String The html representation of the text in the note
detail

index Integer The index of the note detail within its parent
note

last_modified User Action The action that describes the last time the note
detail was modified

query String The query attached to the note detail

query_description String The description of the query

text String The text in the note detail, as plain text

version Integer The version number for the note detail

Result Tags (Queries)

Tag Type Description
type String The type of object this query will work for

query String The query

Result Tags (Relationships)

Tag Type Description
cardinality String The cardinality of the join

cardinality_type String The join’s cardinality type

common_rows Integer The number of common rows

common_values Integer The number of values in common

documented_cardinality String The documented cardinality

domain_quality Double Quality of the value intersection with respect to
both sides

duplicate_matched_rows Integer Number of rows that matched that have values
that were duplicated

duplicate_matched_values Integer Number of values that matched that have
duplicates

join_quality Double Quality of the join with respect to both sides

lhs_column Object The name and id of the column on the left hand
side of the join

lhs_domain_quality Double Quality of the value relationship with respect to
the lhs

lhs_join_quality Double Quality of the join with respect to the lhs

lhs_matched_rows Integer The number of matched rows in the left hand
side

lhs_null_count Integer The number of null values in the left hand side

lhs_table Object The name and id of the table on the left hand
side of the join

lhs_unmatched_rows Integer The number of unmatched rows in the left hand
side

Scripting and REST interface Guide ©2018 Experian Page 134 of 141

Tag Type Description
lhs_unmatched_values Integer The number of unmatched values in the left

hand side

rhs_column Object The name and id of the column on the right
hand side of the join

rhs_domain_quality Double Quality of the value relationship with respect to
the rhs

rhs_join_quality Double Quality of the join with respect to rhs

rhs_matched_rows Integer The number of matched rows in the right hand
side

rhs_null_count Integer The number of null values in the right hand side

rhs_table Object The name and id of the table on the right hand
side of the join

rhs_unmatched_rows Integer The number of unmatched rows in the right
hand side

rhs_unmatched_values Integer The number of unmatched values in the right
hand side

status String The status of the relationship

total_duplicate_rows Integer The total number of duplicate rows

total_duplicate_values Integer The total number of duplicate values

total_rows Integer The total number of rows

total_values Integer The total number of values

values_not_in_common Double The number of values not in common across
both sides

Result Tags (Tables)

Tag Type Description
checksum Integer The checksum of the table

child_count Integer The number of children the table has

code_page String The character set name used when the table
was loaded

column_count Integer The number of columns in the table

datasource Integer The id and name of the datasource for the table

dependency_count Integer The number of dependencies that have been
discovered on the table

dependency_level Integer The number of columns on the lhs when last
testing for dependencies

dependency_threshold Integer The quality threshold used when testing for
dependencies

description String The description of the table

display_name String The display name of the table

display_steward String The display name of the user who stewards the
table

display_steward_group String The display name of the group of the user who
stewards the table

external_name String The external name of the table

high_validation_threshold Integer The threshold between an ok result and a
passed result in validation

key_count Integer The number of discovered keys on the table

Scripting and REST interface Guide ©2018 Experian Page 135 of 141

Tag Type Description
key_level Integer The number of columns on the lhs when last

testing for keys

key_threshold Integer The quality threshold used when testing for
keys

last_dependency_time Timestamp The last time a dependency was discovered on
the table

last_dependency_user String The last user to discover a dependency on the
table

last_key_time Timestamp The last time a key was discovered on the table

last_key_user Object The last user to discover a key on the table

last_validation_time Timestamp The last time the table was validated

last_validation_user Object The last user who validated the table

load_duration Integer The time, in milliseconds, that it took to load
the table

low_validation_threshold Integer The threshold between a failed result and an ok
result in validation

name String The name of the table

note_count Integer The number of notes attached to the table

relationship_count Integer The number of relationships that involve the
table

row_count Integer The number of rows in the table

schema String The name of the containing schema

schema_id Integer The id of the containing schema

score Double The validation score

steward String The name of the user who stewards the table

steward_group String The name of the group for the user who
stewards the table

storage_type String The storage method used for the table

subject_area Object The schema that contains the table

table_group Object The group of tables that the table belongs to

table_group_id Integer The id of the group of tables that the table
belongs to

table_type String The type of the table

unique_formats Integer The number of unique formats in the table

unique_values Integer The number of unique values in the table

validation_status String The status of validation on the table (RED for
fail, AMBER for ok and GREEN for pass)

version Integer The version of the table

Scripting and REST interface Guide ©2018 Experian Page 136 of 141

Result Tags (Table Version Groups)

Tag Type Description
auto_revalidate Boolean Whether or not to revalidate the table

automatically when a new version is loaded

last_reloaded Integer The last time this table was reloaded

reload_method String The method to use to automatically reload the
table. If manual then reloading is not done
automatically.

reload_period String How often to reload the table (if method is not
manual)

source String The name of the source file for the table group

versions Object List The number of versions contained in this group
and the id and name of each table contained in
this group.

versions_to_archive Integer The number of versions to archive before
automatically deleting the oldest archived
version

versions_to_keep Integer The number of versions to keep before
automatically archiving the oldest version

working_days_only Boolean Whether automatic reloading should only be
done on working days

Result Tags (Users)

Tag Type Description
current_project Integer The user’s current project

email String The user’s email address

is_admin Boolean Whether the user is an administrator

is_disabled Boolean Whether the user is allowed to access Experian
Pandora

last_logged_in String A String representation of the last time the user
was logged in, which will show “Never” if they
have never logged in

last_logged_in_time Timestamp The last time the user was logged in

phone1 String The user’s primary phone number

phone2 String The user’s secondary phone number

role Integer The user’s role

status String The status of the user

Result Tags (Views)

Tag Type Description
column_count Integer The number of columns in the view

query String The query that makes up the view

row_count Integer The number of rows in the view

Scripting and REST interface Guide ©2018 Experian Page 137 of 141

object/object_type/object_name/mapping

This resource provides the mapping hierarchy when the format is json or xml and a mapping document

when the format is txt, text, html or pdf. Only relevant for Table and View object types.

Supported Formats

 json, xml, txt, text, html, pdf

Result Tags (Mapping Hierarchy)

Tag Type Description
columns ObjectList Information about the columns

datasource_type DataSourceType Information about the datasource used to import the source or
target, including the name, display name, description, index and icon
type.

external_name String The external name of the source or target table

forced_split Boolean Whether this part of the hierarchy was subject to a forced split

internal_name String The internal name of the source or target table

is_lookup_table Boolean Whether the source or target is a lookup table

name String The name of the source or target table

object_id Integer The repository id for the source or target

object_type ObjectType The object type of the source or target

row_count Integer The number of rows in the source or target table

schema_name String The name of the Schema that contains this table

view_type ViewType Information about the view type of the source or target, including the
name, display name and description

The value of column is a list of objects which could have the following tags:

Tag Type Description
datatype Datatype The documented datatype of the column

default_if_null String What the default is if there is a null value

description String The description of the column

english String English transformation if transformed

expression String The expression that describes the column

external_name String The external name of the column

group_index Integer The position the column takes in the grouping of the table, if it is
involved in grouping

id Integer The repository object id for the column

index Integer The index of the column

is_lookup_column Boolean Whether the column is a lookup column

length Integer The maximum value length in the column

name String The name of the column

nullable Boolean Whether this column is allowed to have null values

original_column Column The details for the original column

precision Integer The largest number of figures in any numeric values in this column
including both sides of the decimal point

scale Integer The largest number of figures in any numeric values in this column
after the decimal point

Scripting and REST interface Guide ©2018 Experian Page 138 of 141

Tag Type Description
sort_index Integer The position the column takes in the sorting of the table, if it is sorted

sort_order SortOrder The order in which the column was sorted, if it was

source Boolean Whether this column is a source

source_id Integer The id of this column’s source

sources StringList The sources of this column

sql String SQL transformation if transformed

type MappingType The name, display name and description of the mapping type of this
column

view_name String The name of the intermediary database view

visible Boolean Whether or not this column is visible in the UI

/object/object_type/object_name/children/child_object_type

This resource provides a list of children for the specified object, of the specified type.

Supported Formats

 json, xml, txt, text, html, pdf

Result Tags

Result Tags are the same as in the objects/object_type resources

/object/object_type/object_name

This resource provides details of a single named object for the specified object.

Supported Formats

 json, xml, txt, text, html, pdf

Result Tags

Result Tags are the same as in the objects/object_type resources

/object/object_type/object_name/list

Same as /object/object_type/object_name

/object/object_type/object_name/node

This returns the node information for the object in the same way as if it was located using the /explorer

resource, but is independent of that structure, and hence does not have a path element to the result. See

/explorer for result tags. This is useful for building user interfaces with navigation entirely independent of

the explorer structure provided.

Scripting and REST interface Guide ©2018 Experian Page 139 of 141

Supported Formats

 json, xml, txt, text, html, pdf

Result Tags

/object/object_type/object_name/quality

Returns the quality report for an object. Only relevant for Table and Table_Version_Group object types.

Supported Formats

 txt, text, html, pdf

/object/object_type/object_name/query/query_type

This resource returns the result of running the query of the specified type on the specified object. The result

is an array of row objects, each of which contains an array of value objects.

Supported Formats

 json, xml, txt, text, html, pdf

Result Tags (Row)

Tag Type Description
id Integer The identifier for the row (row number)

value ObjectList A list of objects, one for each value in each column
position of the row

Result Tags (Value)

Tag Type Description
datatype String The datatype of the current value

value Object The actual value

length Integer The length of the value

obfuscated Boolean Whether or not the value has been obfuscated

foreground_color Color The colour that the value should be rendered in

icon_type IconType The name of the icon that is associated with this value

index Integer The column index for the value

Scripting and REST interface Guide ©2018 Experian Page 140 of 141

/object/object_type/object_name/report/report_type

Supported Formats

 text, txt, html, pdf

This resource returns the specified report. The possible values for report_type are:

 Mapping - Same as /object/object_type/object_name/mapping

 Quality - Same as /object/object_type/object_name/quality

 Relationship - Produces a relationship report, only valid for relationship objects

 Dashboard - Same as /object/object_type/object_name/dashboard

 Allowed - Returns a list of allowed reports for the object

/object/object_type/object_name/dashboard

Returns the quality dashboard for an object. Only relevant for Table, Table_Version_Group and Column

object types.

Supported Formats

 txt, text, html, pdf

/object/object_type/object_name/query/allowed

Returns the query types allowed for this specific object.

Supported Formats

 json, xml, txt, text, html, pdf

/object/object_type/object_name/script/script_name

Returns the result of running the specified script, which should be in the scripts folder on the server.

Supported Formats

 json, xml, txt, text, html, pdf

/scheduler

This resource provides information about jobs running in the scheduler

Supported Formats

Scripting and REST interface Guide ©2018 Experian Page 141 of 141

 json, xml, txt, html, pdf

Supported Parameters

Parameter Type Usage
name String The regular expression pattern to use when retrieving scheduler

information. Defaults to all

Result Tags

Tag Type Description
count Integer The number of jobs in the scheduler

Result Tags (Job)

Tag Type Description

user String The type of job

name String The name of the job

group String The name of the job group

priority JobPriority The priority of the job. See /type/job_priority for a list of priorities

attempts Integer The number of times the job has tried to run

max_attempts Integer The maximum allowed number of times the job can run before
permanent failure

start_time Timestamp The time the job started

scheduled_time Timestamp The time the job is scheduled to start

end_time Timestamp The time the job ended

progress Integer The progress from 0 to 100 for the job

state JobState The state of the job, see /type/job_state for a list of states

job_type JobType The type of job. See /type/job for a list of types

