
Web Services in Experian Pandora

This guide details advanced configuration, which may require Experian consultancy to

configure and implement.

WARNING: Incorrect configuration or use can result in unpredictable results, application

crashes, invalid data, web service credit usage and unsecured data. Experian will not accept

responsibility for misuse.

Introduction
Experian Pandora has a rich suite of inbuilt data validation and transformation functions that

can be used through the Experian Pandora user interface with tables of data. In the scenario

where access to a function external to Experian Pandora is required, Experian Pandora

provides two mechanisms for interoperability. One is the scripting engine described in the

Scripting and REST guide, the second is the Call Web Service function available in Experian

Pandora’s function editor. In short, the Call Web Service function allows connections to most

types of Web Services to be created through configuration alone, allowing users of Experian

Pandora to access the Web Services directly as a Experian Pandora function. Additional

functionality includes results caching to improve Web Service performance and reduce an

organisation’s costs; and exposing cached data for visualisation and searching outside of

Experian Pandora. Any Web Service can be used that returns information in an organised

and standardised structure. Experian Pandora can match JSON, XML, SOAP, plain text

providing the response can be templated through configuration.

Enabling Web Services
In order to use Web Services in Experian Pandora there are several parts of configuration:

1. Host “file” – A json configuration file listing web services and parameters

2. Header, request and response templates – One set per web service

3. Experian Pandora configuration – Settings to enable functionality

The Host “file” is a json description of all Web Services configured for access by Experian

Pandora - this essentially describes how Experian Pandora should present each Web

Service to a user, how it should call them and if it should cache the results. This can be

stored as a file, typically called ‘host’ (with no file extension – important), or provided by a url

(e.g. http://www.example.com/host).

The json configuration is an object with two properties, the first records global properties and

the second is an array of web services objects. The simplistic layout is below:

{

 "global_properties": {

 },

 "web_services": [

]

}

http://www.example.com/host

Below is a table of properties for each type of object:

Parent Object Property Datatype/
Value

Example Description

<Root>.global_propert
ies

connect_timeout Integer 5000 Value in milliseconds each Web Service request
should wait for connection before timing out.

<Root>.global_propert
ies

response_timeo
ut

Integer 20000 Value in milliseconds each Web Service request
should wait for a response before timing out.

web_services[n] name String EchoTest ID of Web Service (should not contain spaces),
not displayed to user.

web_services[n] prompt String Plain text name of Web Service for user interface
web_services[n] description String Description of Web Service for user interface
web_services[n] method GET or

POST
GET Which method to use to connect to the Web

Service
web_services[n] protocol http or

https
http Which protocol to use to connect to the Web

Service
web_services[n] domain String scooterlabs.com The domain name of the Web Service’s URL

(e.g. www.example.com)
web_services[n] endpoint String echo.json The endpoint of the Web Service (everything

after the domain) e.g. example/endpoint/service.
Important note: Parameters may be specified as
part of the path in the form {{parameterID}}. In
this case the specified parameter becomes part
of the endpoint path and will not be included in
the URL or POST body (see below).

web_services[n] use_cache Boolean true Whether the Web Service should store results in
the cache (and retrieve from).

web_services[n] cache_life String 10d:0.2 or 10d Required even if cache is not in use, specifies the
length of time and variation of ‘time to live’ (ttl).
Takes the form of a number, followed by a letter
(m for minutes, h for hours or d for days).
Optionally a colon and percentage expressed as
a decimal can be appended. This will vary the ttl
by a percentage, e.g. 10d:0.2 will mean all items
placed in the cache will live somewhere between

http://www.example.com/

8 and 10 days.
web_services[n] force_cache_cle

ar
Boolean false Setting this to true will clear the Web Service’s

cache on the next restart of the Experian
Pandora service.

web_services[n] interactive Boolean true Set this to true if the Web Service is expected to
be fast enough to return results whilst a user is
interactively using Experian Pandora. Setting this
to false will only call the Web Service when a
function is executed in a table export or similar.

web_services[n] authorization String Basic
OAuth
https://example.com/token

Optional (5.9.0 and later) Basic and OAuth 2.0
(client credentials) are supported for service
authorization. Use ‘user’ and ‘secret’ properties to
set the credentials. If using OAuth 2 and
credentials are required in the POST body (rather
than in a header field) ‘OAuth/Body’ may be
specified before the URL.

web_services[n] user String Optional (5.9.0 and later) The user for
authorization

web_services[n] secret String Optional (5.9.0 and later) The secret (password)
to use for authorization

web_services[n] cache_filters Array An array of objects (details below). Cache filters
allow different caching strategies to be applied
based on the results from a Web Service. The
last cache filter to match a result will apply, if
none are met then the default cache life will be
used instead.

web_services[n] params Array An array of objects (details below). Params are
the parameters a user needs to set to use the
Web Service. Params for a GET request are
added by name value pairs to the URL. Params
for a POST request are parsed into the POST
request body.

web_services[n] static_params Array An array of objects (details below). Static Params
are parameters that are needed to use a Web
Service, but do not change and/or shouldn’t be

displayed to a user. Handling of static params are
the same as params above.

web_services[n] object_mapping Object Cache configuration in the form of an Elastic
Search index mapping. (Beyond the scope of this
guide).

web_services[n] return_params Array An array of objects (details below). Return
Params are the parameters that can be returned
from a Web Service.

cache_filters[n] param String The parameter ID/name to test. Should match the
name of the return parameter.

cache_filters[n] pattern String A regex that is used to test the return parameter.
cache_filters[n] cache_life String 2d:0.2 or 2d The cache life to apply if the parameter’s value

matches the regex pattern. (Same format as
cache life above)

params[n] name String The ID of the parameter (should not contain
spaces), not displayed to user.

params[n] prompt String Plain text name of parameter for user interface
params[n] description String Description of parameter for user interface
params[n] validator String .{4,100} A regex that can be used to test each parameter

value. Used to perform basic validation on
parameters and therefore minimise unnecessary
function calls.

static_params[n] param String The ID of the static parameter (should not contain
spaces), not displayed to user.

static_params[n] value String The value of the static parameter
return_params[n] name String The ID of the return parameter (should not

contain spaces), not displayed to the user).
return_params[n] prompt String Plain text name of return parameter for user

interface
return_params[n] description String Description of return parameter for user interface

An example of a host file with one Web Service is listed below:

{
"global_properties": {

 "connect_timeout": 5000,
 "response_timeout": 20000
 },
 "web_services":
 [
 {
 "name": "EchoTest",
 "prompt": "Echo Test Web Service",
 "description": "Echo test web service for demonstrating functionality",
 "method": "GET",
 "protocol": "http",
 "domain": "scooterlabs.com",
 "endpoint": "echo.json",
 "use_cache": true,
 "cache_life": "10d:0.2",
 "force_cache_clear": false,
 "interactive": true,
 "cache_filters": [
 {
 "param": "param1",
 "pattern": "test",
 "cache_life": "2d:0.2"
 }
],
 "params": [
 {
 "name": "param1",
 "prompt": "Parameter 1",
 "description": "Parameter 1, which is between 4 and 100 characters long",
 "validator": ".{4,100}"
 },
 {
 "name": "param2",
 "prompt": "Parameter 2",
 "description": "Parameter 2, which is an alpha string between 2 and 3
characters long",
 "validator": "[A-Za-z]{2,3}"
 },
 {
 "name": "param3",
 "prompt": "Parameter 3",
 "description": "Parameter 3, which is an integer number between 0 and 4
digits long",

"validator": "[0-9]{0,4}"
 }
],
 "static_params": [
 {
 "param": "aStaticParameter",
 "value": "Static"
 }
],
 "object_mapping": {
 "properties" : {
 "retParam1": {"type" : "string", "index" : "not_analyzed"},
 "retParam2": {"type" : "string", "index" : "not_analyzed"},
 "retParam3": {"type" : "string", "index" : "not_analyzed"},
 "yourIP": {"type" : "string", "index" : "not_analyzed"}
 }
 },
 "return_params": [
 {
 "name": "retParam1",
 "prompt": "Return Parameter 1",
 "description": "The echoed parameter 1"
 },
 {
 "name": "retParam2",
 "prompt": "Return Parameter 2",
 "description": "The echoed parameter 2"
 },

 {
 "name": "retParam3",
 "prompt": "Return Parameter 3",
 "description": "The echoed parameter 3"
 },
 {
 "name": "yourIP",
 "prompt": "Your IP",
 "description": "The IP captured by the echo test, which should be yours."
 }
]
 }
]
}

Web Service Stubs

In addition to the host file, each Web Service needs three configuration files:

1. Headers – contains header information for the Web Service

2. Request – contains the request body template for the Web Service

3. Response – contains the response body template for the Web Service

These files need to be in the same “location” as the Host file and need to be named as such

(with no file extension):

1. host_<lowercase_name_of_service>_headers - e.g.

host_echotest_headers

2. host_<lowercase_name_of_service>_request - e.g.

host_echotest_request

3. host_<lowercase_name_of_service>_response - e.g.

host_echotest_response

Note: If on a case-sensitive file system, the entire file name must be lowercase.

If the Host file has been served as a file from the file system, Experian Pandora will attempt

to access these files (one set per Web Service) from the same directory. If the Host file has

been served from a url Experian Pandora will attempt to also access these files via http (e.g.

http://www.example.com/host would be followed by

http://www.example.com/host_echotest_headers).

Headers

This file should contain a json object with a set of key value pairs for each header that needs

to be added to the request (e.g. an authentication token), or an empty json object if none are

required (or the Web Service is a GET based service).

Example 1 (no headers):

{

}

Example 2 (e.g. Experian Email Validate):

{

 “Auth-Token”: “MYPASSWORD”

}

http://www.example.com/host
http://www.example.com/host_echotest_headers

Request

For a GET based service, this file should be empty but should still exist. For a POST based

service, this should be the request body to be sent to the Web Service. For any dynamic

parameters, Experian Pandora will insert either Params or StaticParams where it matches

their ID in curly brackets. For example, a parameter appearing in the configuration with the

name “param1”, if found in the template as {{param1}} will be replaced with the actual value

of the parameter as configured by the user in Experian Pandora.

Example 1 (e.g. Experian Mobile Validate V3):

{

 "Number": "{{number}}"

}

Example 2 (notice the String parameter has quotation marks, the Integer parameter does

not) (e.g. Experian Email Validate):

{

 "Email": "{{email}}",

 "Timeout": {{timeOut}}

}

Response

Similar to the request file, the response file contains a template that describes the response

Experian Pandora can expect from a Web Service. Again, where a return parameter is

expected, if its ID/name is placed in double curly brackets, Experian Pandora will attempt to

extract its value from the response. In addition, there are two further tokens that can be used

in the template to deal with varying responses from a Web Service. Any area of the

response that is surrounded by $OPT OPT$ tags will be treated as optional (may or may not

occur), and these can be nested. Any area of the response that has the token IGN will be

treated as an area that should be ignored (for example, system generated information or

time/date stamps – information that can’t be matched). The response template must match

the final character of a response (i.e. IGN cannot be placed as the last part of a template).

Experian Pandora will attempt to match the Web Service response against this template. If it

successfully matches, then it will return results. If it doesn’t, then the results will not be

available and therefore this is the key configuration aspect to test.

Example 1 (e.g. EchoTest):

{

 IGN

 "request": {

 "aStaticParameter": IGN,

 "param1": {{retParam1}},

 "param2": {{retParam2}},

 "param3": {{retParam3}}

 },

 $OPT"client_ip": {{yourIP}},OPT$

 IGN

}

Example 2 (e.g. Experian Email Validate):

{

 "Email": {{emailSubmitted}},

 "Certainty": {{certainty}},

 "Message": {{message}}$OPT,

 "Corrections": {{corrections}}OPT$

}

Example 3 (e.g. Experian Mobile Validate V3):

{

 "ResultCode": {{resultCode}},

 $OPT"AdditionalPhoneInfo": {

 "ValidatedPhoneNumber": {{validatedPhoneNumber}},

 "CountryName": {{countryName}},

 "CountryCode": {{countryCode}},

 "OperatorName": {{operatorName}},

 $OPT"PortedOperatorName": {{portedOperatorName}},

 "PortedCountryName": {{portedCountryName}},

 "PortedCountryCode": {{portedCountryCode}},OPT$

 "IsRoaming": {{isRoaming}},

 $OPT"RoamingNetworkName": {{roamingNetworkName}},

 $OPT"RoamingNetworkPrefix": {{roamingNetworkPrefix}},OPT$

 "RoamingCountryCode": {{roamingCountryCode}},OPT$

 "MCCMNC": {{MCCMNC}}

 },OPT$

 "Number": {{number}},

 "PhoneType": {{phoneType}},

 "Certainty": {{certainty}}IGN

}

Experian Pandora Configuration

After configuring a host file and stubs for a Web Service, there are five Experian Pandora

settings to configure. To configure these, open the Experian Pandora client and navigate to:

Settings > Server Settings > All Server Settings > Communication.

1. Web Service Configuration Endpoint – this is the url (e.g.

http://www.example.com/host) or file path (e.g. file://C:\testdir\host) to the Host file. If

this field is blank, then Experian Pandora won’t have any enabled web services.

2. Web Service Liveness – this is a percentage setting that specifies what should

happen if a Web Service starts failing during a data job (e.g. export). Each time a

Web Service call fails this number will drop for that Web Service. If a job is currently

running and the Web Service starts to fail once it reaches this cut-off point the job will

be aborted. This is to avoid unexpected data corruption. The default is 100 (percent),

so by default no failures are accepted. Each failure will decrease the ‘health’ by an

increasing percentage amount (i.e. multiple failures are worse that single failures).

3. Web Service Proxy - allows the user to override any proxy settings configured in the

host file and direct all Web Service calls through a specified proxy.

4. Web Services Cache – this setting enables Experian Pandora’s embedded Elastic

Search to cache Web Service results. This is highly recommended for increasing

speed, however should only be used in a secure data environment as it will store

Web Service results in a non-secure index.

5. Web Services Cache External Access – this setting enables http connectivity for

the embedded Elastic Search cache. This will allow other Elastic Search Nodes to

discover the cache, allow the cache to be searched externally by web service calls

and allows Kibana (visualisation) to connect to the cache. This does however, reduce

the security of data in the cache so should be carefully considered before enabling.

This setting will not have any affect if the cache is not enabled.

file:///C:/testdir/host

Using Web Services in Experian Pandora
To use a pre-configured Web Service in Experian Pandora, simply insert a new custom

function as part of a new column or transformation, select ‘Web Service Call’ from the list,

populate the parameters, select the return parameter and finish the function:

Becomes:

A Web Services function that hasn’t been set to interactive will return a warning message

indicating that it will only be calculated on export:

A Web Service that isn’t responding will result in an error message instead.

Web Service Logical Flow
The following diagram details the logical decision flow for Web Services in order to minimise

the number of external calls made and handle Web Service errors.

Visualising the Cache
If the cache has been exposed by http externally, Kibana can be used to visualise the

contents of the cache. With Experian Pandora running, start Kibana and Kibana will auto-

discover the cache. Kibana documentation will describe further how to start visualisations.

